COMO BLUFF ANTICLINE, ALBANY AND CARBON COUNTIES, WYOMING

BY

ROBERT O. DUNBAR

Contribution from the Geological Survey of Wyoming
University of Wyoming, Laramie

Reprinted for private circulation from
The Bulletin of the American Association of Petroleum Geologists
Vol. 28, No. 8, August, 1944
PRINTED IN THE U.S.A.
COMO BLUFF ANTICLINE, ALBANY AND CARBON COUNTIES, WYOMING

BY

ROBERT O. DUNBAR

Contribution from the Geological Survey of Wyoming
University of Wyoming, Laramie

Reprinted for private circulation from
THE BULLETIN OF THE AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS
Vol. 28, No. 8, August, 1944
PRINTED IN THE U.S.A.
COMO BLUFF ANTICLINE, ALBANY AND CARBON COUNTIES, WYOMING

ROBERT O. DUNBAR
Laramie, Wyoming

ABSTRACT

Como Bluff anticline is a westward-plunging, asymmetric fold extending across the east-central part of the Laramie Basin. The northeast axial trend of the anticline is nearly normal to the axial trends of the Laramie Basin and the Laramie Range. The northwest and steeper flank of the anticline is faulted by the North Como thrust. The thrust plane dips southeast. The fold probably originated from northwest-southeast compressive stresses. A geologic map of the western quarter of the anticline, interpretative structure sections, and detailed stratigraphic sections are given. The area has been made geologically famous by successful excavations for dinosaurs and other Jurassic reptiles.

INTRODUCTION

Location.—The Como Bluff anticline is located in Albany and Carbon counties, Wyoming (Fig. 1). It extends from the western slope of the northward-trending Laramie Range westward into the Laramie Basin. This anticline terminates 5 miles east of the town of Medicine Bow, Carbon County, Wyoming. Approximately 30 square miles were mapped in Ts. 22 and 23 N., Rs. 77 and 78 W. The western quarter of the anticline was included in this survey.

Purpose of report.—This work was undertaken with the aid of the department of geology of the University of Wyoming, and the Geological Survey of Wyoming to obtain: (1) an accurate geologic map of the region, (2) a detailed stratigraphic section, (3) a report of the geologic structure of Como Bluff anticline, (4) a generalized account of the economic values of the region, and (5) additional general geologic knowledge of Wyoming.

Previous geologic investigations.—This locality has been made geologically famous by the findings of fossilized reptiles during the 1880's and 1890's. Their occurrence in the low-dipping Jurassic Morrison formation on the south flank of the anticline has promoted great excavations by vertebrate paleontologists. Many famous scientists have worked in the area, including O. C. Marsh, Henry Fairfield Osborn, Richard S. Lull, Frederic B. Loomis, Barnum Brown, and W. H. Reed. However, the studies of these men were chiefly limited to vertebrate paleontology. Because of the excellent exposures, many stratigraphic sections have been measured across Como Bluff anticline. Dobbin, Hoots, Dene, and Hancock (6: 137–38), Darton and Siebenthal (4: 26, 28), and Darton (3: 441–44, 445) give reference to sections measured at Como Ridge. W. C. Knight (10: 384) speaks of the Como stage and gives Jurassic faunal lists. Giddings (7: 14, 37) comments on the Como fault and the various exposures. Darton, Blackwelder, Elliot, and Siebenthal (5: 8) mention the vertebrate fauna at Como Bluff. This

1 Manuscript received, February 7, 1944. Thesis submitted to the department of geology and the committee on graduate study at the University of Wyoming, in partial fulfillment of the requirements for the degree of Master of Arts, 1942.

2 Present address: Geological Department, Phillips Petroleum Company, Bartlesville, Oklahoma.
LUFF ANTICLINE, ALBANY AND CARBON COUNTIES, WYOMING

ROBERT O. DUNBAR
Laramie, Wyoming

ABSTRACT

Anticline is a westward-plunging, asymmetric fold extending across the east-central Laramie Basin. The northwest axial trend of the anticline is nearly normal to the axial Laramie Range. The northwest and steeper flank of the anticline in the Como thrust. The thrust plane dips southeast. The fold probably originated from a northeast compressive stresses. A geologic map of the western quarter of the anticline, structure sections, and detailed stratigraphic sections are given. The area has been famous by successful excavations for dinosaurs and other Jurassic reptiles.

INTRODUCTION

The Como Bluff anticline is located in Albany and Carbon counties (Fig. 1). It extends from the western slope of the northward-lying Range westward into the Laramie Basin. This anticline terms in the town of Medicine Bow, Carbon County, Wyoming. 30 square miles were mapped in Ts. 22 and 23 N., Rs. 77 and 78 W. of the anticline was included in this survey.

Report.—This work was undertaken with the aid of the department of geology at the University of Wyoming, and the Geological Survey of Wyoming provided the accurate geologic map of the region, (2) a detailed stratigraphic report of the geologic structure of Como Bluff anticline, (4) a general report of the economic values of the region, and (5) additional general knowledge of Wyoming.

 Geological investigations.—This locality has been made geologically by finding fossilized reptiles during the 1860's and 1890's. Their low-dipping Jurassic Morrison formation on the south flank of the Como Bluff anticline has promoted great excavations by vertebrate paleontologists. Scientists have worked in the area, including O. C. Marsh, Henry Bolt, Richard S. Lull, Frederic B. Loomis, Barnum Brown, and Frederick Gehrels. However, the studies of these men were chiefly limited to vertebrate Because of the excellent exposures, many stratigraphic sections were measured across Como Bluff anticline. Dobbin, Hoots, Dane, and Han-38, Darton and Siebenthal (4: 26, 28), and Darton (3: 44-44, reference to sections measured at Como Ridge. W. C. Knight (10: 384) Como stage and gives Jurassic faunal lists. Giddings (7: 14, 37) the Como fault and the various exposures. Darton, Blackwelder, benthal (5: 8) mention the vertebrate fauna at Como Bluff. This received, February 7, 1944. Thesis submitted to the department of geology and the state study at the University of Wyoming, in partial fulfillment of the requirements Master of Arts, 1942.
paper and the detailed map are the first of this nature ever presented about the area.

Field work.—The area was mapped on the scale of 1 inch equals 1,000 feet, by using stadia rod with telescopic alidade and plane table. A base line along the high Dakota ridge on the south flank was established. The Wall Creek sandstone was used as a mapping boundary except on the east and open end of the anticline where Rock Creek was chosen as the boundary. Field work was carried on for 6 weeks during the last half of the summer of 1941 under the direction of S. H. Knight. Field expenses were furnished by the Geological Survey of Wyoming. The entire area mapped is included in the topographic sheet of Como Ridge, Wyoming.

Accessibility.—The west margin of the area mapped is crossed by the Lincoln Highway (U.S. 30), and by the Union Pacific Railroad. Near the east margin of the area, the graded county road to Marshall, Albany County, Wyoming, crosses the anticline. Numerous trails are scattered throughout the region.

Acknowledgments.—The writer wishes to thank, as director of the thesis, S. H. Knight, chairman of the department of geology of the University of Wyoming, and H. D. Thomas, State geologist of Wyoming, for making possible the preparation of this report, and R. H. Beckwith for numerous valuable suggestions. Thanks are also due Tom Boylan and Fred Cuthill, residents of the region, for their hospitality and co-operation, and George A. Ashland for his assistance in the field.

TOPOGRAPHY

Como Bluff anticline is a broad westward-plunging fold. The resistant beds of the south flank give rise to a prominent hogback known as Como Bluff. The corresponding beds of the north flank lie in and border the valley of Rock Creek and do not give rise to a comparable hogback.

SOUTH FLANK

Como Bluff has an average elevation of 7,100 feet and stands several hundred feet above the surrounding country. The hogback trends east and in most places parallels the strike of the beds. It is capped by the resistant lower Dakota sandstone. The less resistant Morrison formation is exposed in the northward-facing, steep slope of the ridge. Erosion of the variegated shales of this formation gives rise to miniature badlands. The Sundance and Jelm formations are exposed in the lower part of this ridge. The Chugwater sandstones and red shales are exposed in the core of the anticline. South of the crest of the ridge is a long gentle slope controlled by beds of comparatively low dip. Several thin-bedded resistant sandstones of the Dakota and Thermopolis formations, the Mowry siliceous shale, and the Wall Creek sandstone form small eastward-trending hogbacks. The less resistant intervening black shales are eroded into shallow valleys.
detailed map are the first of this nature ever presented about the
area was mapped on the scale of 1 inch equals 1,000 feet, by
neotectonic and plane table. A base line along the
ridge on the south flank was established. The Wall Creek
sandstone mapping boundary except on the east and open end of the anticline
reclined was chosen as the boundary. Field work was carried on for 6
the last half of the summer of 1941 under the direction of S. H.
expenses were furnished by the Geological Survey of Wyoming.
a mapped is included in the topographic sheet of Como Ridge,
y. — The west margin of the area mapped is crossed by the Lincoln
30), and by the Union Pacific Railroad. Near the east margin of
ded county road to Marshall, Albany County, Wyoming, crosses
Numerous trails are scattered throughout the region.
ments. — The writer wishes to thank, as director of the thesis, S. H.
man of the department of geology of the University of Wyoming,
as, State geologist of Wyoming, for making possible the prepara-
report, and R. H. Beckwith for numerous valuable suggestions.
so due Tom Boylan and Fred Cuthill, residents of the region, for
ity and cooperation, and George A. Ashland for his assistance in the

TOPOGRAPHY
The anticline is a broad westward-plunging fold. The resistant beds of
s give rise to a prominent hogback known as Como Bluff. The cor-
ds of the north flank lie in and border the valley of Rock Creek
ve rise to a comparable hogback.

SOUTH FLANK
The average elevation of 7,100 feet and stands several hundred
surrounding country. The hogback trends east and in most places
trike of the beds. It is capped by the resistant lower Dakota sand-
s resistant Morrison formation is exposed in the northward-facing,
the ridge. Erosion of the variegated shales of this formation gives
re badlands. The Sundance and Jelm formations are exposed in the
his ridge. The Chugwater sandstones and red shales are exposed
the anticline. South of the crest of the ridge is a long gentle slope
beds of comparatively low dip. Several thin-beded resistant sand-
Dakota and Thermopolis formations, the Mowry siliceous shale,
Creek sandstone form small eastward-trending hogbacks. The less
vening black shales are eroded into shallow valleys.

NORTH FLANK
The beds on this flank of the anticline are nearly vertical and in places are
overturned. Here, the resistant beds form minor hogbacks. The strike of the beds
is northeast. The less resistant shales are inconspicuous as land forms. The elevation
of the Wall Creek outcrop is approximately 6,700 feet and the thicker Dakota
sandstone ridge stands about 700 feet higher in elevation.
The nose of the westward-plunging anticline stands at a lower elevation and
is crossed by the highway and the railroad.
In summary, the Dakota of the south flank forms a prominent hogback. Also
on the south flank, subordinate hogbacks paralleling the main ridge are formed
by the Mowry siliceous shale and the Wall Creek sandstone. On the north flank,
the Dakota forms a northeastward-trending, well-defined minor hogback lying
at a lower elevation than Como Ridge. The Frontier black shales, the Morrison
variegated shales on the flanks, and the Chugwater red shales in the core of the
anticline are non-resistant and do not have pronounced relief.

DRAINAGE
The entire area north of Como Ridge is drained by Rock Creek. Here, Rock
Creek flows in a westerly direction and empties into the Medicine Bow river 2
miles northwest of this area.
The area south of Como Ridge is cut by westward-draining intermittent
streams which empty into the Medicine Bow River.
A small lake, known as Aurora Lake, occupies a depression in the Chugwater
shales. The axis of the anticline passes near the south shore of the lake. The steep-
ly dipping Jelm sandstone crops out along the north shore of the lake. The straight
north shore of the lake follows the strike of this bed. On the east, also in the
Chugwater shales, are smaller lakes and swamps fed by the overflow of the Medicine
Bow water wells and near-by Union Pacific Railroad springs. This water also
collects in depressions near the axis of the anticline.
Along the eastern margin of the mapped area, Rock Creek cuts diagonally
across the anticline. In this region, the heavy flow of water after rains is carried
to the creek by deep gullies cut along strike-valleys. Near the Swan Company
ranch and the State Fish Hatchery several springs drain into Rock Creek.

STRATIGRAPHY
GENERAL STATEMENT
The Laramie Basin within which the area described is located, is underlain by
thousands of feet of Paleozoic and Mesozoic rocks. The stratigraphic succession
is well known.
The oldest exposures in the area mapped are beds of the lower Chugwater
formation. However, because of the rise of the anticlinal axis on the east, beds
older than Chugwater are exposed along the anticline. Giddings (7: 14), discusses these pre-Chugwater formations as well as the crystalline core of the anticline where they are exposed some miles east.

TABLE I

<table>
<thead>
<tr>
<th>Age</th>
<th>Unit Mapped</th>
<th>Thickness (ft)</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Cretaceous</td>
<td>Carille shale</td>
<td>27</td>
<td>Soft black shale and gray calcareous shale</td>
</tr>
<tr>
<td></td>
<td>Wall Creek sandstone</td>
<td>700</td>
<td>Brown to white platy salt and pepper sandstone containing: Inoceramus fragilis, Scaphites warreni, Prionocyclus wyomingensis, Ostrea sp. and shark teeth</td>
</tr>
<tr>
<td></td>
<td>Frontier shale</td>
<td>250</td>
<td>Black fissile to platy shale with septarian concretions</td>
</tr>
<tr>
<td></td>
<td>Mowry shale</td>
<td>220</td>
<td>Black to brown platy siliceous fossiliferous shale which weathers to silver-gray color. Thin bentonite seams are present</td>
</tr>
<tr>
<td></td>
<td>Thermopolis shale</td>
<td>80</td>
<td>Dark gray to black shale with thin beds of brown sandstone. A few scattered ironstones</td>
</tr>
<tr>
<td>Lower Cretaceous</td>
<td>Dakota group</td>
<td>220</td>
<td>Alternating brown blocky quartzitc sandstones and black shale. Pink, black, and green shale. White fine-grained to coarse-grained conglomeratic sandstone. Brown to gray massive sandstone weathering to mottled maroon-orange color</td>
</tr>
<tr>
<td>Upper Jurassic</td>
<td>Sundance formation</td>
<td>204</td>
<td>Yellow fine-grained platy sandstone. Olive-drab shale containing Bolommites densus. Gray thin-bedded sandstone. Gray sandy shale. Buff massive sandstone</td>
</tr>
<tr>
<td>Triassic</td>
<td>Jelm formation</td>
<td>94</td>
<td>Tan sandstone. Red sandy shale. Lenses of green and maroon conglomerate</td>
</tr>
<tr>
<td></td>
<td>Chugwater formation</td>
<td>368</td>
<td>Predominantly orange-red sandy shale. Gray sandstone. Alternating red and green sandy shales. Gypsumiferous red shale. Gray jagged and marly limestone</td>
</tr>
<tr>
<td>Permian</td>
<td>Embarr group</td>
<td>27</td>
<td>Orange-red shale and gray limestones</td>
</tr>
</tbody>
</table>

The beds exposed in that part of Como Bluff anticline under consideration are shown in the generalized stratigraphic section, Table I, and in the detailed sections listed on the following pages. Thickness was measured normal to the strike of the beds with a Brunton compass and a steel tape with corrections for slope angles.

PRE-CAMBRIAN ROCKS

The pre-Cambrian rocks exposed in the Laramie Range (Fig. 1), as noted by Giddings (7: 9), are gray schists and gneisses made up of quartz, mica, and feld-
ugwater are exposed along the anticline. Giddings (17: 14), discusses ugwater formations as well as the crystalline core of the anticline re exposed some miles east.

TABLE I

NERALIZED STRATIGRAPHIC SECTION OF COMO BLUFF AREA, WYOMING

<table>
<thead>
<tr>
<th>Unit</th>
<th>Mapped</th>
<th>Thickness (Ft)</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>argille shale</td>
<td></td>
<td></td>
<td>Soft black shale and gray calcareous shale</td>
</tr>
<tr>
<td>Kill Creek sandstone</td>
<td>27</td>
<td></td>
<td>Brown to white platy salt and pepper sandstone containing: Terebratula fragilis, Scaphites warreni, Prenocystites wyomingensis, Orites tv., and shark teeth</td>
</tr>
<tr>
<td>pantler shale</td>
<td>700</td>
<td></td>
<td>Black fissile to platy shale with septarian concretions</td>
</tr>
<tr>
<td>fowry shale</td>
<td>27</td>
<td></td>
<td>Black to brown platy siliceous fossiliferous shale which weathers to silver-gray color. Thin bentonite seams are present</td>
</tr>
<tr>
<td>hermodis shale</td>
<td>85</td>
<td></td>
<td>Dark gray to black shale with thin beds of brown sandstone. A few scattered ironstones</td>
</tr>
<tr>
<td>narkota group</td>
<td>220</td>
<td></td>
<td>Alternating brown blocky quartzite sandstones and black shale. Pink, black, and green shale. White fine-grained to coarse-grained conglomeratic sandstone. Brown to gray massive sandstone weathering to mottled maroon-orange color</td>
</tr>
<tr>
<td>forrion formation</td>
<td>300</td>
<td></td>
<td>Largely variegated shale. Gray sandstone. Gray-brown fresh-water limestone. Lenses of limestone pebble conglomerate. Vertebrate remains</td>
</tr>
<tr>
<td>undance formation</td>
<td>204</td>
<td></td>
<td>Yellow fine-grained platy sandstone. Olive-drab shale containing Belemnitites densus. Gray thin-beded sandstone. Gray sandy shale. Buff massive sandstone</td>
</tr>
<tr>
<td>flmo formation</td>
<td>94</td>
<td></td>
<td>Tan sandstone. Red sandy shale. Lenses of green and maroon conglomerate</td>
</tr>
<tr>
<td>nub group</td>
<td></td>
<td></td>
<td>Orange-red shale and gray limestones</td>
</tr>
</tbody>
</table>

exposed in that part of Como Bluff anticline under consideration the generalized stratigraphic section, Table I, and in the detailed I on the following pages. Thickness was measured normal to the beds with a Brunton compass and a steel tape with corrections for

PRE-CAMBRIAN ROCKS

Cambrian rocks exposed in the Laramie Range (Fig. 1), as noted by (1), are gray schists and gneisses made up of quartz, mica, and feld-

spar. In the pre-Cambrian exposures in the east end of Como Bluff anticline, much varied intrusive material is found. Island-like exposures of pure white quartz, pegmatites, basic dikes, and scattered diabasic masses are abundant in the exposures.

PRE-CUWATER ROCKS

The first sedimentary unit lying on the pre-Cambrian granitic complex consists of approximately 50 feet of red beds composed of conglomerates, sandstones, and shales. Darton (3: 143) correlated these beds with the Pennsylvanian Amsden formation. However, in this paper, because the distinction between the Amsden and the Tensleep is not clear in this area, all of the Pennsylvanian beds are called Tensleep. The basal conglomerate was found to contain molds and imprints of Mississippian fossils. Darton believed that long periods of exposure before the deposition of the Amsden probably removed all of the Mississippian Madison limestone from this area. Overlying the Amsden beds is found about 325 feet of Pennsylvanian Tensleep (also called Casper) formation. These beds consist of cross-beded sandstones and interbedded sandstones and limestones. Overlying the Tensleep formation are the Permian Satanka red shales and thin limestones, about 200 feet in total thickness. The 15-foot thick Permian Forelle limestone separates these beds from the lower Chugwater. The only part of the Chugwater not exposed in the mapped area consists of approximately 50 feet of red sandy shale which rests directly on the Forelle.

PERM-

Chugwater formation.—The total thickness of the Chugwater formation is approximately 868 feet, of which the upper 215 feet is exposed in the area mapped. The lowest lithologic unit exposed is a limestone which occurs 54 feet above the base of the Chugwater as defined by Thomas (17: 1688) in his Freezout Hills section. In the measurement of the section in this area, the Jelm-Chugwater contact was taken at the base of a buff cross-beded sandstone. Throughout the Laramie Basin area, the Chugwater formation rests on the crinkly Forelle limestone. The Chugwater formation consists mainly of red sandy shale and red sandstone with subordinate amounts of gray sandstone, gypsum and thin beds of limestone. Thomas (17: 1660) states that the Chugwater is a lithologic unit embracing rocks of both Permian and Triassic age, and a unit with a different age for its basal beds in different localities. Darton and Siebenthal (4: 22-23) measured 1,335 feet of Chugwater which included the Jelm.

Thomas points out (17: 1687) that along the north flank of the Como Bluff anticline the Little Medicine tongue of the Dinwoody formation (17: 1670) and a part of the lower Freezout tongue of Chugwater (17: 1670) are exposed. In order to map the desired structure within the lower part of the Chugwater formation, four exposed thin beds of porous limestone were used. The Little Medicine tongue is the upper and outermost limestone used in mapping the structure. The
Stratigraphic Section of Part of Chugwater Formation Exposed in Secs. 26, 27, and 35, T. 23 N., R. 77 W.

<table>
<thead>
<tr>
<th>Jelm formation</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chugwater formation</td>
<td></td>
</tr>
<tr>
<td>Red sandy shale</td>
<td>9</td>
</tr>
<tr>
<td>Gray platy sandstone</td>
<td>5</td>
</tr>
<tr>
<td>Gray-green sandy shale</td>
<td>6</td>
</tr>
<tr>
<td>Gray fine-grained massive resistant sandstone</td>
<td>12</td>
</tr>
<tr>
<td>Red shaly sandstone</td>
<td>25</td>
</tr>
<tr>
<td>Greenish gray shaly sandstone</td>
<td>3</td>
</tr>
<tr>
<td>Red shaly sandstone with 6-inch beds of greenish gray sandstone</td>
<td>72</td>
</tr>
<tr>
<td>Green finely crystalline platy sandy limestone; weathered brown</td>
<td>1</td>
</tr>
<tr>
<td>Red sandy shale, green sandy shale, and red shaly sandstone</td>
<td>57</td>
</tr>
<tr>
<td>Greenish gray shaly massive sandstone</td>
<td>30</td>
</tr>
<tr>
<td>Red sandy shale with several 1-foot thick sandstones near top</td>
<td>205</td>
</tr>
<tr>
<td>Red sandy shale</td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Medicine tongue of Dinwoody</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buff fine-grained shaly salt-and-pepper sandstone at top and becoming more shaly in middle; Limestone at bottom; all red-stained</td>
<td>11 (No. 1 lb.)</td>
</tr>
<tr>
<td>Yellow to buff salt-and-pepper sandstone and dolomite</td>
<td>1</td>
</tr>
<tr>
<td>Dove-colored shale</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base of section</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezout tongue of Chugwater</td>
<td></td>
</tr>
</tbody>
</table>

*See footnote in following table.

Stratigraphic Section of Freezout Tongue of Chugwater, Measured near Difficulty Post Office, Freezout Hills, Carbon County, Wyoming, by Thomas (17: 1006)

<table>
<thead>
<tr>
<th>Little Medicine tongue of Dinwoody</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezout tongue of Chugwater</td>
<td></td>
</tr>
<tr>
<td>Covered portion, probably mostly red shale; in Flat Top uplift this part consists of red shales and thin breccias. Exact thickness not measureable</td>
<td>20</td>
</tr>
<tr>
<td>Porous, impure, massive gray limestone</td>
<td>2 (No. 2 lbs.)</td>
</tr>
<tr>
<td>Variegated, red and olive, gypsiciferous shale</td>
<td>10.5</td>
</tr>
<tr>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td>Breccia; angular masses of gray limestone in red shale matrix</td>
<td>6 (No. 3 lbs.)</td>
</tr>
<tr>
<td>Breccia; angular fragments of red shale and crinkled limestone in gray limestone matrix</td>
<td>4</td>
</tr>
<tr>
<td>Red shale</td>
<td>2</td>
</tr>
<tr>
<td>Breccia; angular fragments of crinkled limestone and red shale in gray limestone matrix grading downward into crinkly limestone</td>
<td>2 (No. 4 lbs.)</td>
</tr>
<tr>
<td>Gray shale</td>
<td>1</td>
</tr>
<tr>
<td>Breccia; red shale fragments in limestone matrix</td>
<td>0.2</td>
</tr>
<tr>
<td>Breccia; red, sandy shale fragments in matrix of same character</td>
<td>2</td>
</tr>
<tr>
<td>Fine-grained, finely laminated, slightly crinkled white limestone</td>
<td>1.5</td>
</tr>
<tr>
<td>Red sandy shale with numerous circular gray spots</td>
<td>50**</td>
</tr>
</tbody>
</table>

Total thickness of Chugwater | 868 |

Forelle formation

* Numbers are writer's and refer to limestones within the lower portion of the Chugwater.
** This portion of Thomas' section is not exposed in the measured area.

three lower limestones are contained in the Freezout tongue. Thomas, in describing the Freezout tongue, measured a section approximately 20 miles northwest of this area. This section is given as representative of that part of the Chugwater which is not exposed or too poorly exposed to be measured in detail.
Section of Part of Chugwater Formation Exposed in Secs. 26, 27, and 35, T. 23 N., R. 77 W.

Feet

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhyolite</td>
<td>18</td>
</tr>
<tr>
<td>Undersandstone</td>
<td>3</td>
</tr>
<tr>
<td>Massive resistant sandstone</td>
<td>25</td>
</tr>
<tr>
<td>Sandstone</td>
<td>12</td>
</tr>
<tr>
<td>Siltstone</td>
<td>57</td>
</tr>
<tr>
<td>Limestone with 1-foot thick sandstones near top</td>
<td>20</td>
</tr>
</tbody>
</table>

Total: 177

Tongue of Dinwoody

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eh shaly sandstone at top and becoming more shale</td>
<td>11</td>
</tr>
<tr>
<td>Limestone at bottom; all red-stained</td>
<td>2</td>
</tr>
<tr>
<td>Salt-and-pepper sandstone and dolomite</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 13

Chugwater Formation

Tongue of Freezout Tongue of Chugwater, Measured Near Difficulty 26, Freezout Hills, Carbon County, Wyoming, by Thomas (17: 1680)

Feet

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongue of Dinwoody</td>
<td></td>
</tr>
<tr>
<td>Probably mostly red shale; in Flat Top uplift this part consists of 30 feet of thin breccias.</td>
<td>20</td>
</tr>
<tr>
<td>Massive gray limestone</td>
<td>2 (No. 2 lbs.)+ 16.5</td>
</tr>
<tr>
<td>Olive, gypseous shale</td>
<td>3</td>
</tr>
<tr>
<td>Masses of gray limestone in red shale matrix</td>
<td>6 (No. 3 lbs.) 4</td>
</tr>
<tr>
<td>Fragments of red shale and crinkled limestone in gray limestone</td>
<td></td>
</tr>
<tr>
<td>Fragments of crinkled limestone and red shale in gray limestone</td>
<td>2 (No. 4 lbs.) 2</td>
</tr>
<tr>
<td>Downward into crinkly limestone</td>
<td></td>
</tr>
<tr>
<td>Fragments in limestone matrix</td>
<td>2</td>
</tr>
<tr>
<td>Fractures in matrix of same character</td>
<td>0.2</td>
</tr>
<tr>
<td>Fractures in matrix of same character</td>
<td>2</td>
</tr>
<tr>
<td>With numerous circular gray spots</td>
<td></td>
</tr>
</tbody>
</table>

Total: 1086

Upper Jurassic Rocks

Sundance formation - The Sundance formation is well exposed in this area and is 204 feet in thickness. The top member of the formation is lemon-yellow sand. A middle unit of olive-drab shale contains abundant guards of the cephalopod, Belemnites densus. The base was drawn at the contact of the white sandstone and the typical Jelm conglomeratic lenses. The lower unit of sandstone approximately 90 feet thick is believed to be the stratigraphic equivalent of the Nugget sandstone. This sandstone in the Freezout Hills section has been tentatively correlated by Neely (14: 724) with the Nugget sandstone.

Stratigraphic Section of Sundance Formation, Measured in Sec. 26, T. 23 N., R. 77 W.

Feet

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Morrison formation</td>
<td></td>
</tr>
<tr>
<td>Sundance formation</td>
<td></td>
</tr>
<tr>
<td>Lemon-yellow fine-grained, platy, friable sandstone</td>
<td>6</td>
</tr>
<tr>
<td>Dark green-gray drab, drab with Belemnites densus beginning to appear 15 feet below yellow sandstone</td>
<td>40</td>
</tr>
<tr>
<td>Gray platy sandstone</td>
<td>7</td>
</tr>
<tr>
<td>Olive-drab sandstone</td>
<td>5</td>
</tr>
<tr>
<td>Gray platy sandstone</td>
<td>7</td>
</tr>
<tr>
<td>Olive-drab shale</td>
<td>17</td>
</tr>
<tr>
<td>Gray platy sandstone</td>
<td>20</td>
</tr>
<tr>
<td>Green, gray, and red shale</td>
<td>26</td>
</tr>
<tr>
<td>Gray thin-bedded cross-bedded sandstone</td>
<td>3</td>
</tr>
<tr>
<td>Gray sandy shale</td>
<td>7</td>
</tr>
<tr>
<td>Buff to yellow massive, soft sandstone; very fine-grained at top grading to medium-grained and coarse-grained near bottom</td>
<td>80</td>
</tr>
<tr>
<td>White medium-grained sandstone</td>
<td>11</td>
</tr>
</tbody>
</table>

Total: 204
Morrison formation.—The thickness of the Morrison measured across the
dinosaur-graveyard excavation pits is 308 feet. This world-famous formation
consists chiefly of variegated shales, thin sandstones, lenses of limestone conglomerate,
and fresh-water limestones at the base. Exposures of this formation have
yielded many fossil reptile remains. For this reason the name Como Bluff is
usually associated with the name, "Dinosaur Graveyard."

STRATIGRAPHIC SECTION OF MORRISON, MEASURED IN SEC. 17, T. 22 N., R. 77 W. Feet

Dakota group
Morrison formation
Black, green, red, purple, brown, and maroon variegated shale; weathers to gray clay-balls of
pea size .. 209
Gray fine-grained soft but platy friable sandstone with very thin conglomerate at bottom 17
Green and red shale .. 5
Brown, gray, red, purple, and green mottled limestone 2
Red, gray, and green shale 28
Gray fine-grained soft sandstone 5
Variegated shales 5
White fine-grained massive semi-friable sandstone 5
Variegated shales 9
White fine-grained platy sandstone 4
Variegated shales 9
Gray-brown finely crystalline massive limestone with conspicuous calcite crystals and calcite-
recemented fractures 4
Green and gray shale; lenses of limestone pebble conglomerate with round stones up to 1/2 inch
in diameter 6
Total .. 308

Sundance formation

CRETACEOUS ROCKS

Dakota group.—The rock succession lying between the Morrison formation
and the Thermopolis shale has been described by Lee (12: 18) as the Dakota
group. On the geologic map (Fig. 2) they are shown as a unit. They are 200 feet
thick at Como Bluff. These rocks consist of several alternating black shales and
brown blocky quartzitic sandstones forming minor hogbacks, pink to purple,
black, and green shales, and a white sandstone with a basal conglomerate. The
resistant lower conglomeratic sandstone caps Como Ridge on the south flank of
the Como Bluff anticline.

Thermopolis shale.—The Thermopolis shale consists of dark gray to black
non-resistant shales with several thin beds of gray platy sandstone containing
marks resembling worm trails. A few scattered ironstone concretions are also
present. The total thickness is 80 feet.

Mowry shale.—At Como Bluff the thickness of the Mowry shale is 131 feet.
This compares favorably with that of Dobin and associates (6: 139). It is a
black to brown platy siliceous shale which weathers to a characteristic silver-gray
color and contains fossil fish scales. Bentonite seams are interbedded with
the shale. The resistant character of these shales gives rise to prominent ridges
commonly covered with scattered pine trees. The fact that this formation gives
FORMATION.—The thickness of the Morrison measured across the keyard excavation pits is 308 feet. This world-famous formation of variegated shales, thin sandstones, lenses of limestone conglomerates, and fossil reptile remains. For this reason the name Como Bluff is noted with the name, “Dinosaur Graveyard.”

APPROXIMATED SECTION OF MORRISON, MEASURED IN SEC. 17, T. 22 N., R. 77 W.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>purple, brown, and maroon variegated shale; weathers to gray clay-beds of male.</td>
<td>500</td>
<td>2.</td>
<td>soft but platy friable sandstone with very thin conglomerate at bottom.</td>
<td>17</td>
</tr>
<tr>
<td>3.</td>
<td>purple and green mottled limestone.</td>
<td>2</td>
<td>4.</td>
<td>soft sandstone.</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>5.</td>
<td></td>
<td>7.</td>
<td>massive semi-friable sandstone.</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>9.</td>
<td></td>
<td>11.</td>
<td>platy sandstone.</td>
</tr>
<tr>
<td>7.</td>
<td>crystalline massive limestone with conspicuous calcite crystals and calcite nodule lenses; lenses of limestone pebble conglomerate with round stones up to 1/2 inch in diameter.</td>
<td>4</td>
<td>8.</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

CRETACEOUS ROCKS

—The rock succession lying between the Morrison formation and the Dakota group has been described by Lee (12: 18) as the Dakota group. These rocks consist of several alternating black shales and sandstones, and a white sandstone with a basal conglomerate. The conglomerate caps Como Ridge on the south flank of the anticline.

The Thermopolis shales consist of dark gray to black worm trails. A few scattered ironstone concretions are 80 feet thick. At Como Bluff the thickness of the Mowry shales is 131 feet, and that of the Dobbin and associates (6: 139). It is a sandy siliceous shale which weathers to a characteristic silvatic sandstone. Bentonite seams are interbedded with sandstone, giving rise to prominent ridges with scattered pine trees. The fact that this formation gives rise to ridges, taken together with the characteristic silver-gray color, makes it one of the most easily recognizable horizon markers exposed in this area.

Frontier formation.—In the region mapped, the Frontier formation consists of 700 feet of dark gray to black shales becoming more sandy toward the top. Septarian concretions occur near the base.

Wall Creek sandstone.—A sandy shaly succession at the top of the Frontier formation is called the Wall Creek. In the northern part of the Laramie Basin, the Wall Creek is divisible into several sandy zones. Dobbin and associates (6: 139), point out that this sandstone may not be the exact stratigraphic equivalent of the oil-producing sands of the same name in the central part of Wyoming. The bed as found in the mapped area consists of brown fossiliferous sandstone 27 feet in thickness. It is a ridge-forming unit and is easily discernible.

Carlile shale.—The Carlile shale consists of soft black shale and gray calcareous shale containing large ironstone concretions. The thickness given by Beckwith (14: 120) for the Laramie Basin is 250 feet. Thomas (18: 1196) showed that the fauna of the so-called Carlile of the Laramie Basin is Niobrara in age. He suggested that the name Sage Breaks shale member of the Niobrara proposed by Rubey (175: 4) be used for the shale immediately above the Wall Creek sandstone in the Laramie Basin. These beds were mapped as the Carlile shale.

STRATIGRAPHIC SECTIONS OF THERMOPOLIS, MOWRY, FRONTIER, AND WALL CREEK FORMATIONS, MEASURED IN Secs. 18 AND 19, T. 22 N., R. 77 W.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlile shale</td>
<td>Wall Creek sandstone</td>
<td>Brown above and white below medium- to coarse-grained cross-bedded and platy fossiliferous salt-and-pepper sandstone containing Scaphites variabilis, Inoceramus fragilis, Plicatilis wrighti, Ostrea sp., and numerous shark teeth associated with rounded black chert pebbles.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontier formation</td>
<td>Black fissile to platy sandy shale.</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark gray and black fissile to platy shale with septarian concretions about 100 feet from bottom. Shale becomes lighter in color and more sandy near top.</td>
<td>643</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOWRY SHALE

Black to brown platy siliceous fossiliferous shale which weathers to silvery-gray color containing fossil fish scales; thin bentonite seams. 131

THERMOPOLIS SHALE

Dark gray to black platy non-resistant shale with 6-inch bed in middle of gray platy well cemented resistant sandstone containing marks resembling worm trails. A few scattered ironstone concretions. 80

STRATIGRAPHIC SECTION OF DAKOTA FORMATION, MEASURED IN Secs. 18, T. 22 N., R. 77 W.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermopolis shale</td>
<td>Dakota group</td>
<td>Brown fine-grained blocky well cemented resistant quartzitic sandstone forming dip-slope and minor hogback.</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black shale with gray-green weathered sandy limestone 6 inches thick containing marks resembling worm borings.</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GEOLOGIC MAP OF COMO BLUFF ANTICLINE
ALBANY-CARBON COUNTIES, WYOMING

THE GEOLOGICAL SURVEY OF WYOMING
H.D. Thomas, State Geologist

Geology by R.O. Dunbar
Index Map by G.A. Axtons

1941
<table>
<thead>
<tr>
<th>Description</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray-brown fine-grained platy to blocky resistant sandstone forming dip-slope and minor hogback</td>
<td>6</td>
</tr>
<tr>
<td>Black and gray shale</td>
<td>4</td>
</tr>
<tr>
<td>Light gray to white fine-grained massive and cross-bedded resistant sandstone; forms minor hogback</td>
<td>6</td>
</tr>
<tr>
<td>Black shale with small beds of brown sandstone and bands of ironstone concretions</td>
<td>45</td>
</tr>
<tr>
<td>Buff to brown platy sandstone</td>
<td>4</td>
</tr>
<tr>
<td>Gray fine-grained platy sandstone weathering brown</td>
<td>2</td>
</tr>
<tr>
<td>Buff fine-grained platy sandstone with odd conchoiul-like fracture and surface marked by odd concentric rings</td>
<td>15</td>
</tr>
<tr>
<td>Black and gray shale</td>
<td>4</td>
</tr>
<tr>
<td>Brown medium-grained massive resistant jointed sandstone and some conglomerate</td>
<td>18</td>
</tr>
<tr>
<td>White to gray fine-grained massive sandstone to conglomerate; highly cross-bedded, resistant, and cut with siliceous veinlets</td>
<td>49</td>
</tr>
<tr>
<td>Gray shale</td>
<td>8</td>
</tr>
<tr>
<td>Brown sandstone</td>
<td>3</td>
</tr>
<tr>
<td>Pink, black, and green shale with two thin brown sandstone beds</td>
<td>20</td>
</tr>
<tr>
<td>Brown to gray fine-grained massive resistant sandstone in thin beds and siliceous veinlets; weathers gray to mottled maroon-orange color</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>219</td>
</tr>
</tbody>
</table>

Morrison formation

STRUCTURE

GENERAL RELATIONS

The Laramie Basin is a synclinorium whose elongate axis extends northward. The Como Bluff anticline is a transverse fold in the central part of this basin. The axis of the anticline extends from the west flank of the Laramie Range in a southwesterly direction for a distance of approximately 25 miles to a point 5 miles southeast of the town of Medicine Bow. The Como Bluff anticline is bordered on the north by the Bone Creek syncline; this syncline separates the Como Bluff anticline from the Flat Top anticline. The Como Bluff anticline is bordered on the south by a syncline or synclines which separate it from the East Foot Creek anticline and the Gillespie anticline. The axial trends of the Flat Top anticline, Como Bluff anticline, and Gillespie anticline are approximately parallel; the axial planes dip southeast.

COMO BLUFF ANTICLINE

This structure is located in Albany County with the exception of the westernmost 5 miles, which lies in Carbon County. The fold causes a deflection in the trend of the pre-Cambrian rocks of the Laramie Range (4: 52). It is a strongly asymmetric fold and is faulted on the steep northern flank. In general, the beds on the north flank strike N. 45° E. and dip 80° NW.; in places the beds are vertical and overturned. The beds on the south flank strike N. 80° E. and dip 10°-20° S. The axial plane dips 70°-75° S. These relations are shown in the structure section AA' (Fig. 3).

The major anticlinal axis plunges west. The fold trends northeast in the region east of the area mapped. It finally meets the mountain front at an angle of nearly 90°. In the area mapped the axis trends northeast through Secs. 26, 35, and the E. ½ Sec. 34, T. 23 N., R. 77 W. Through the S. ½ Sec. 34, the trend...
COMO BLUFF ANTICLINE, WYOMING

The Chugwater formation is exposed in the core of the anticline. On the south flank these beds near the top of the formation dip 6°–8° S. On the north flank these beds dip 65° N. Four thin Chugwater limestones reveal a heart-shaped dome along the axis of the anticline in Secs. 3 and 4, T. 22 N., and in Sec. 34, T. 23 N., R. 77 W.

Along the south flank in Sec. 12, T. 22 N., R. 77 W., the strike of the beds changes abruptly from N. 86° E. to N. 45° W. In Sec. 2, the strike changes from N. 45° W. to N. 82° E. The abrupt change of strike gives rise to an S-shaped structure.

A minor anticline is developed in Sec. 3, the axis of which trends southeast. A minor syncline is developed in Sec. 2, the axis of which also trends southeast. These minor folds plunge southeast. These relations are shown in the structure section B8' (Fig. 4).

The prominent Como Ridge on the south flank of the anticline is due to the resistant Dakota sandstones rising on a gentle dip of 10°–14°.

The S-shaped structure and the dome-shaped rise of the beds probably are the results of differences of strength or structural relationships within the pre-Cambrian basement complex at the time of folding.

NORTH COMO FAULT

The North Como fault is the name employed to designate the thrust fault along the steep north flank of the Como Bluff anticline. The fault extends southwesterly from the pre-Cambrian of the Laramie Range in T. 24 N., R. 73 W. (7: P1 xi), with a remarkably uniform strike, through the area mapped into Sec. 13, T. 22 N., R. 78 W., where it disappears beneath the alluvium of the Rock Creek valley. The thrust plane dips 70° S. This observation was taken along a gully 20 feet deep in the NE 1/4 Sec. 7, T. 22 N., R. 77 W.

The following discussion traces the fault from its west end, northeast toward the Laramie Range. In the east part of Sec. 13, T. 22 N., R. 78 W., the fault traverses the lower part of the Frontier. Farther west the fault is covered with alluvium. In the SW 1/4, NW 1/4 Sec. 18, T. 22 N., R. 77 W., the fault cuts across the Mowry and the Thermopolis. In the S 1/4 Sec. 7, the Mowry wedges out and the Dakota is thrust upon Frontier. In the E 1/4 Sec. 7, the fault is parallel with the strike of the Morrison. A sudden thinning of the Morrison clays was observed at this point. A conspicuous transverse gully has developed along the trace of the fault where it cuts across the Dakota. Through the rest of the area mapped the fault lies in the Morrison. The geologic map (Fig. 2) shows a minor change of the strike of the beds and the strike of the fault from N. 45° E. in Sec. 33, T. 23 N.,
ROBERT O. DUNBAR

R. 77 W., to N. 55° E. in Sec. 34. The North Como fault east of the mapped area has been described by Giddings (7).

The general thinning of the Morrison as it is traced northeastward along the strike, and the minor distortions in the Dakota rocks adjacent to the Morrison, are evidence of the presence of the fault. It is to be expected that the fault would follow a zone of weakness, such as the poorly consolidated Morrison clays.

The south block is the apparently upthrown block. It is believed that the greatest amount of displacement occurs in the pre-Cambrian and decreases upward through the sediments. From measurements taken along the projected fault plane shown in the structure section AA' (Fig. 3), the displacement along the fault plane of the pre-Cambrian-sedimentary contact is 500 feet. Measurements of that part of the structure section drawn above the ground indicate a displacement of the Wall Creek-Frontier contact of approximately 100 feet. In the drawing of these structure sections, the beds were drawn as concentric. No attempt was made to employ variation in the crestal and flank thicknesses.

MINOR FAULTS

In the S. ¼ Sec. 27, T. 23 N., R. 77 W., a fault extends northward from the North Como fault. This nearly vertical fault strikes due north and makes a 45° angle with the northeast strike of the major thrust. North beyond the Dakota hogback the fault is obscured by alluvium. The fault is visible where it offsets the tan and black beds of the Dakota in the south face of the hogback. This fault is probably a vertical tear fault. The major component of the net-slip is strike-slip. There is little evidence of dip-slip movement. The horizontal displacement is about 50 feet.

In the N. ¼ Sec. 24, T. 22 N., R. 78 W., on the nose of the westward-plunging anticline, the resistant Mowry shale is highly distorted by a fault striking N. 50° E. There is about 200 feet of offset of the Mowry beds. The fault dies out at the east in the Thermopolis shale and at the west in the Frontier shale. This tension fault resulted from the sharp flexure of the beds at this point during the folding of the anticline.

A nearly vertical fault striking N. 50° W. occurs in the NW. ¼ Sec. 12, T. 22 N., R. 77 W. Here, the Sundance and the Jelm beds are offset about 100 feet. The fault dies out northwest in the Chugwater shales and southeast in the wide outcrop of the Dakota. This tension fault was the result of the sharp flexure of the beds at the time the S-shaped structure was formed.

ORIGIN OF COMO BLUFF ANTICLINE AND THRUST

The axial trend of the Laramie Range anticline is deflected in a broad arc extending from north to west. This westward deflection begins at a point nearly due east of the region under discussion, which therefore lies on the inner or concave side of the arc. This area was a zone of compression due to the crowding of the materials within the arc. Here compressional forces would operate in direc-
tions paralleling chords of the arc, or in this area, in a north-northwest direction. Within the area of the arc the direction of least resistance or direction of maximum relief to the compressive stresses is upward.

The Como Bluff anticline trends northeast or normal to the direction of compression. A thrust in the pre-Cambrian dipping southeast is to be expected from an interpretation derived from the application of the strain-ellipsoid theory. Beckwith (2: 1475), discusses a similar thrust that probably was initiated in the pre-Cambrian and was propagated upward into the sediments. The sediments are gradually warped into a steep monocline in front of the edge of the growing fracture. As the fracture penetrated the monocline it was deflected upward by the stratification in the vertical beds, such as are found on the north flank of Como Bluff anticline. As analyzed by Beckwith, this produces a thrust which steepens as it cuts upward through the sediments toward the surface. It is believed that the thrust has a nearly uniform dip in the pre-Cambrian. This interpretation explains the high dip of the plane of the thrust at the present ground surface. Surfaceward propagation of such a pre-Cambrian thrust fault by continued horizontal compression would give rise to an anticlinal fold and thrust fault, such as the Como Bluff anticline and the North Como fault.

STRUCTURAL SUMMARY

The northeast-trending transverse folds extending across the east-central part of the Laramie Basin are asymmetric, with the steeper flanks of the anticlines on the north. These folds are in some places faulted by a southeastward-dipping thrust. Such folds were the results of a general northwest-southeast compression with the predominant direction of maximum relief upward. These movements are believed to have occurred intermittently through late Upper Cretaceous and Paleocene time.

ECONOMIC VALUES OF REGION

SALINE DEPOSITS

In Albany County there are numerous deposits of sodium sulphates and magnesium sulphates in the bottoms of small lake depressions. About 15 miles north of the town of Rock River, Wyoming, and 4 miles east of the area mapped, these deposits occupy the lower parts of undrained excavations in the Chugwater formation. These deposits range from 1 acre upward to 90 acres.

W. C. Knight (11: 259) stated that these deposits are commonly covered with water after heavy rains. Upon the evaporation of the water layers of solid salts remain which range from thin crusts to beds several feet in thickness. Knight ascertained that the salts were derived from decomposing Chugwater sandstones and were transported by water to the natural depressions. Ordinarily, there is a regular gradation from the sodium salts in the upper basins to the magnesium salts in lower basins. As explained by Knight, this is a natural method of different-
ROBERT O. DUNBAR

COMMUNICATIONS

Bluff anticline trends northeast, or normal to the direction of least resistance. A thrust in the pre-Cambrian dipping southeast is to be expected.

Structural Summary

Transverse folds extending across the east-central part of Wyoming are asymmetric with the steeper flanks of the anticline. These folds are in some places faulted by southeastward movements of the compressive stress derived from the application of the strain-ellipsoid theory. Published data (9) discusses a similar thrust that probably was initiated in the north flank of the anticline. As analyzed by Beckwith, this produces a thrust which cuts upward through the sediments toward the surface. It is the thrust with a nearly uniform dip in the pre-Cambrian. This indicates the high dip of the plane of the thrust at the present ground level. Propagation of such a pre-Cambrian thrust fault by conical compression would give rise to an anticlinal fold and thrust on Como Bluff anticline and the North Como fault.

Economic Values of Region

Saline Deposits

The magnesium salts having a greater solubility than the sodium salts are carried by high waters to the lower basins. Upon evaporation, the sodium salts are deposited in the upper basins and the magnesium salts in the lower basins.

In 1933, a detailed report on this subject was prepared for the Geological Survey of Wyoming by S. H. Knight (9). Among his samples collected for analysis were those from the largest lake, named Brooklyn or Pawnee Lake. The average figures obtained on the salt composition of this deposit were: 86 per cent epsomite and 5 per cent mirabilite. Because of this occurrence of nearly pure epsomite a large building has been erected on the edge of this lake to obtain and to purify Epsom salts for commercial use.

Underground Water

The succession and structure of the rocks in the Laramie Basin are favorable for the occurrence of large supplies of underground water. Most of the water-bearing sandstones are interbedded with relatively impervious shales, a condition favorable for underground storage.

Springs in the mapped area furnish an abundant supply of cold water of good quality. Because of this available source of water, a fish hatchery has been established in the narrow Rock Creek valley. This hatchery was founded by Tom Boylan, local pioneer, and is now owned and being developed by the State of Wyoming. Numerous springs were mapped adjacent to the hatchery in the NE 1/4 Sec. 34, T. 23 N., R. 77 W.

The domestic water supply for the town of Medicine Bow (Fig. 1), is furnished by two artesian wells in the NE 1/4 Sec. 4, T. 22 N., R. 77 W. The water is piped 9 miles and lifted into the town's elevated tank by the force of gravity. The two wells resulted from oil exploration wells drilled in 1929.

Immediately south and in the same section as the Medicine Bow wells are the Union Pacific springs. The roadbed of the railroad was formerly located near these springs. A large abandoned masonry reservoir lies down the slope from this supply. The entire flow draining from the reservoir and the overflow from the Medicine Bow wells drains into the lakes and swamps.

The domestic supply for the Swan Company ranch is furnished by springs mapped near the west section line of the SW 1/4 Sec. 35, T. 23 N., R. 77 W.

Several springs occur adjacent to the south shore of Aurora Lake which is located in the core of the anticline. Water from these springs drains into the lake.

In all of the foregoing locations, the water comes from the Chugwater red sandstones which are exposed on the surface and found in the core of the anticline. It is believed that the Tensleep sandstone is the chief source bed. About 15 miles east and at a higher elevation than this area the Tensleep formation has a widespread outcrop and large catchment area where it is exposed in the core of the anticline. The thick sandstones of this formation are carried westward by their low dip toward the center of the Laramie Basin where they are covered by shales so that
the contained water is under considerable hydrostatic head. It is probable that
water wells drilled into the Tensleep sandstone in the vicinity of the mapped area
would yield water. Some of these wells would probably flow. Springs with a
smaller water supply may have the upper Chugwater sandstones as their source
beds.

Small springs found in the SW ¼ Sec. 17, T. 22 N., R. 77 W., flow from the
Mowry shale where it is exposed along the south flank of the anticline. These
springs are of little importance as the water is either evaporated or absorbed
after flowing a short distance along intermittent stream gullies. The source bed
is the upper Dakota sandstone.

GYPSUM DEPOSITS

Extensive deposits of gypsum are found in the N. 3 Sec. 35 and in the S. 3
Sec. 26, T. 23 N., R. 77 W. These deposits are found in the Chugwater shales
and in places change the general appearance from the characteristic red to a white
color. The dip of the beds ranges from 20° N. to 10° S. The axis of the Como Bluff
anticline passes through these sections; consequently, the beds are nearly hori-
zontal in much of the area. No estimate of the available tonnage was attempted.

OIL POSSIBILITIES

In Sec. 34, T. 23 N., and Secs. 3 and 4, T. 22 N., R. 77 W., is a small anti-
cline structure. In order to map this structure, four limestones of the lower
Chugwater formation were used. The first limestone resembles the Little Medi-
cine tongue of the Dinwoody formation described by Thomas (16). This bed can
be followed through the afore-listed sections. It appears on the map (Fig. 2) as a
heart-shaped structure. Three other recognizable limestone units of the Freeze-
out tongue are also present. The red shale of the Freezout tongue, exposed inside
of the innermost limestone mapped, is the oldest exposed bed in this area.

The potential oil-bearing beds are the Satanka shales (Embar group), or more
probably, the Tensleep sandstones. In near-by proved structures both of these
formations were found void of oil. These beds elsewhere in Wyoming produce a
black crude of low gravity.

In 1920, this structure was tested by the drilling of two wells in the NE ¼
Sec. 4. Figure 2 shows that these locations are not on the center of the structure
but on the west flank. Two artesian water wells flow from the Tensleep and now
furnish the domestic supply for the town of Medicine Bow.

The low effective closure of about 60 feet and the large flow of fresh water
from the Tensleep sands suggest that a well drilled on the crest of the dome would
not encounter oil. As far as known to the writer the logs of the two test wells are
unavailable.

BENTONITE

In this region bentonite deposits are found in the Mowry shale. The beds
range in thickness from 5 feet to a few inches. It is not extensively excavated in
Robert O. Dunbar

I water is under considerable hydrostatic head. It is probable that
rolled into the Tensleep sandstone in the vicinity of the mapped area
water. Some of these wells would probably flow. Springs with a
supply may have the upper Chugwater sandstones as their source
ings found in the SW. ¼ Sec. 17, T. 22 N., R. 77 W., flow from the
where it is exposed along the south flank of the anticline. These
little importance as the water is either evaporated or absorbed
a short distance along intermittent stream gullies. The source bed
Dakota sandstone.

Gypsum Deposits

Deposits of gypsum are found in the N. ½ Sec. 35 and in the S. ½
N., R. 77 W. These deposits are found in the Chugwater shales
range the general appearance from the characteristic red to a white
of the beds ranges from 20° N. to 10° S. The axis of the Como Bluff
through these sections; consequently, the beds are nearly hori-
on of the area. No estimate of the available tonnage was attempted.

Oil Possibilities

T. 23 N., and Secs. 3 and 4, T. 22 N., R. 77 W., is a small anti-
In order to map this structure, four limestones of the lower
ation were used. The first limestone resembles the Little Mede-
Dinwood formation described by Thomas (16). This bed can
ough the afore-listed sections. It appears on the map (Fig 2) as a
ature. Three other recognizable limestone units of the Freeze-
so present. The red shales of the Freezout tongue, exposed inside
limestone mapped, is the oldest exposed bed in this area.
Oil-bearing beds are the Satanka Shales (Embar group), or more
sleeper sandstones. In nearby proved structures both of these
ound void of oil. These beds elsewhere in Wyoming produce a

structure was tested by the drilling of two wells in the NE. ¼
ows that these locations are not on the center of the structure
nk. Two artesian water wells flow from the Tensleep and nov-
ic supply for the town of Medicine Bow.
ve closure of about 60 feet and the large flow of fresh water
sands suggest that a well drilled on the crest of the dome would
As far as known to the writer the logs of the two test wells are

Bentonite Deposits

Bentonite deposits are found in the Mowry Shale. The beds
rom 5 feet to a few inches. It is not extensively excavated in

Como Bluff Anticline, Wyoming

Brief History of Exploration of Dinosaur Remains

The Jurassic Morrison beds at Como Bluff have yielded an important fauna of
Mesoic reptiles. Many of these Wyoming specimens are displayed in distant
museums. During the Mesozoic, turtles, lizards, crocodiles, and primate mam-
mals existed along with dinosaurs and their remains are found in the same beds.
W. H. Reed is given credit for the discovery of these Wyoming dinosaur de-
positions in 1877, just south of the now abandoned railroad station of Como. The
list of famous paleontologists who have spent much time and field work at Como
Bluff includes: O. C. Marsh, Henry Fairfield Osborn, Richard S. Lull, Frederic
B. Loomis, Barnum Brown, and Reed.

A highly fossiliferous bed is found about 80 feet below the Dakota near the
middle of the Morrison. It is a clay bed beneath a 4-foot band of sandstone. Simp-
son (16:1), states that every order of non-marine vertebrate known to have been
in existence during Upper Jurassic time, and smaller forms of other classes, are
represented in the collection from one quarry at Como Bluff.

A small museum has been founded at Como Bluff, Wyoming, by Tom Boylan.
The museum building, on U. S. Highway 30, is built entirely of fragments of
fossilized dinosaur bones. Boylan has lived in this region for nearly 50 years and,
as a youth, helped in the excavation work.

A complete and detailed discussion of the Wyoming dinosaurs has been writ-
ten by Moodie (13).

Bibliography

7. Giddings, H. J., "The Geology of a Portion of the Laramie Basin Lying North of Como Anti-
cline, Albany County, Wyoming," unpublished Master's thesis in possession of the State