Open File Report 89-2

COAL GEOLOGY, GEOPHYSICAL LOGS, AND LITHOLOGIC DESCRIPTIONS FROM A DRILLING PROGRAM AT THE RAWHIDE VILLAGE SUBDIVISION, CAMPBELL COUNTY, WYOMING

by
Richard W. Jones and Paul J. Taucher

Laramie, Wyoming
1989

Funds for preparation and publication of this report were provided, in part, by a grant from the U.S. Bureau of Land Management through Cooperative Agreement WY910-CA7-01.

Descriptions and use of trade names and commercial products in this report or for this project do not constitute their endorsement by the State of Wyoming and the Geological Survey of Wyoming or by the U.S. Department of the Interior and the U.S. Bureau of Land Management. Trade names and commercial product names are provided for descriptive purposes only.

This report has not been reviewed for conformity with the editorial standards of the Geological Survey of Wyoming.

Contents

Page
Introduction 1
Regional geology 1
Coal depositional history. 7
Drill hole data acquisition. 8
Results. 10
Coal thickness 10
Interburden 16
Structure 16
overburden. 20
References 22
Appendix A. Geophysical logs and lithologic descriptions 23
Figures

1. Location map of Rawhide Village study area. 2
2. Base map of Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.) with surface topography, drill hole locations, and cross section locations 3
3. Regional geologic setting of the Powder River Basin 5
4. General stratigraphic section of rocks exposed in and beneaththe Rawhide Village Subdivision study area (modified from Martinand others, 1988)6
5. Cross sections through Rawhide Village Subdivision. 11-12
6. Isopach map of the upper Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.) 13
7. Isopach map of the lower Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.) 15
8. Isopach map of interburden between upper and lower Wyodak coal bed, Rawhide village Subdivision (Sec. 20, T.51N., R.72W.) 17
9. Structure contour map on top of upper Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.) 18
10. Structure contour map on top of lower Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.) 19
11. Isopach map of overburden on top of upper Wyodak coal bed and lower Wyodak coal bed where upper Wyodak coal bed is absent, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.) 21

Introduction

A drilling program was undertaken by the Geological Survey of Wyoming, in cooperation with the Land Quality Division of the Wyoming Department of Environmental quality, to assist in a study of methane and hydrogen sulfide gases venting at Rawhide Village. Rawhide Village is approximately 6 miles north of Gillette, in the $N E 1 / 4, \sec .20, T .51 \mathrm{~N} ., \mathrm{R} .72 \mathrm{~W} .$, Campbell County, Wyoming (Figure 1). Amax Coal Company's Eagle Butte mine is located east of and immediately adjacent to Rawhide Village in all or parts of secs. 16, 20, and 21, T.51N., R.72W. Carter Mining Company's Rawhide mine is located approximately 3 miles east-northeast of Rawhide Village and Triton Coal Company's Buckskin mine is located approximately 3 miles north of the subdivision.

[^0]Rawhide Village is located in the Powder River Basin, a structural basin bounded on the west by the Bighorn Mountains and the Casper arch, on the east by

Figure 1. Location map of Rawhide Village study area.

[^1]the Black Hills uplift, and on the south by the Laramie Mountains and Hartville uplift (Figure 3). The basin is strongly asymmetric to the west; the synclinal axis follows the western edge of the basin, strikes generally north-northwest, and plunges gently toward the north. Sedimentary rocks along the western edge of the basin dip steeply to the east and are often faulted; sedimentary rocks exposed in the eastern part of the basin exhibit much gentler dips (0.5 to 3 degrees) to the west-southwest. The maximum thickness of sedimentary rocks within the basin is approximately 17,000 feet along the basin axis. The measurable structural relief between the lowest part of the basin and the highest point on the surrounding uplift of the Bighorn Mountains, measured on the top of the Precambrian basement, is approximately 21,000 feet (McDonald, 1972) •

Most of the mineable coal in the eastern Powder River Basin is located in the Wyodak coal deposit, which contains one or more thick coal beds referred to in this report as the Wyodak coal. The Wyodak in this area is also known as the Roland-Smith or the Wyodak-Anderson coal bed(s). The Wyodak is stratigraphically located in the upper part of the Tongue River Member of the Fort Union Formation (Figure 4). The Tongue River Member consists of interbedded shales, siltstones, sandstones, and numerous coal beds. The Wyodak is the highest coal in the Tongue River Member; the top of the Wyodak coal bed is the contact between the Paleocene Fort Union Formation and the Eocene Wasatch Formation (Law, 1976). The Wyodak coal bed has an average thickness over 100 feet in the Gillette area, is subbituminous in rank, and has an average heating value that ranges from 7,900 to 8,500 Btu/pound.

Zones of "no coal" in the Tongue River Member of the Fort Union Formation in this area may be paleostream channels, where coal was never deposited, or the

Figure 3. Regional geological setting of the powder River Basin.

Figure 4. General stratigraphic section of rocks exposed in and beneath the Rawhide village Subdivision study area. Diagonal pattern indicates rocks not present in the study area. Modified from Martin and others, 1988.
result of erosion (removal) of previously deposited coal by near-surface oxidation (burning) or by streams channelling into the coal. In the first case, the paleochannel exists at the same time peat is being deposited in swampy areas adjacent to the channel. Amax Coal Company and Law (1976) have identified a large east-west trending paleochannel of the first type directly north and northeast of Rawhide Village. Clinker exists in the vicinity of Rawhide Village where near-surface coal has burned in place. Clinker (baked and fused rock formed when the materials overlying the oxidizing coal are heated) is usually found as a reddish or reddish brown, hard, erosion-resistant material that forms buttes or topographic ridges throughout much of the Powder River Basin.

Coal depositional history

Following the retreat of the Lewis (Pierre) seaway from the Powder River Basin (as documented by the Late Cretaceous regressive marine sand sequence known as the Fox Hills Sandstone), fluvial sandstones, shales, siltstones, and thin coal beds of the Latest Cretaceous Lance Formation were deposited. (A general stratigraphic sequence for the study area is shown as Figure 4.) The coal-bearing paleocene Fort Union Formation overlies the Lance Formation. The Fort Union Formation is composed of nonmarine rocks that originated as swamp, estuarine, lacustrine, and fluvial sediments. Although these environments persisted during deposition of the older Tullock and Lebo Members of the Fort Union Formation, conditions for preservation of large quantities of plant material, which later became thick coal beds, apparently did not exist in the Powder River Basin until deposition of the Tongue River Member and the overlying Eocene Wasatch Formation. A humid subtropical climate prevailed in this area and large peat swamps dominated the Powder River Basin during deposition of these two units. Near the end of Wasatch Formation deposition, the climate became much drier and accumulation of coal-forming materials ceased.

In the eastern Powder River Basin (near the present site of Rawhide Village), the Wyodak coal bed(s) was deposited in peat swamps adjacent to an east-west oriented channel system thought to have been a trunk stream system that merged farther west with a major north-south oriented river channel system (Warwick and Stanton, 1988). Great thicknesses of peat accumulated in the interfluve (areas between the major stream channels). Periodically, sedimentladen water flooded the edges of the swamp as a crevasse splay, creating clay, silt, and sand partings now seen as "splits" that separate the Wyodak into more than one coal bed. Areas bordering the stream channels were most susceptible to these periodic floods, and in some instances numerous, sometimes thick, clay layers developed. As the major stream channels meandered across the area, thin, discontinuous, "rider" peat beds were often deposited on top of the abandoned stream channel deposits. Similarly, meandering rivers occasionally eroded previously deposited peat, creating channel areas (cutouts) where coal is no longer present. Also at various times during peat deposition, fresh-water lakes formed when subsidence exceeded accumulation of peat and (or) sediment. Today, these areas often contain very fine-grained mudstones, claystones, thin fresh-water limestones, and remains of fresh-water invertebrates.

Drill hole data acquisition

All Geological Survey of Wyoming drilling was conducted using conventional rotary drilling rigs under contract. The drilling fluid used was native mud with a $35 \mathrm{sec} / 1000 \mathrm{ml}$ viscosity in a Marsh funnel. Standard bits were used for drilling and coring. Mud pits were constructed for the drill holes south of the subdivision and for holes drilled in the park. All of the test holes completed in the subdivision were drilled through existing streets utilizing portable mud pits. Standard abandonment procedures were followed after drilling and logging was completed.

All Geological Survey of Wyoming drill holes were logged by Goodwell, Inc. using gamma ray-neutron, gamma ray-density, spontaneous potential(SP), resistivity, caliper, and temperature tools. In drill holes $T H-6 A$ and $T H-22 A$, only a gamma ray-neutron log was run because of caving and other downhole problems. The electrical and nuclear logs were used to correlate lithologic units and to assist in assigning the proper depth to the lithologic descriptions. In addition, sample cuttings were described, dried, and saved. Lithologic descriptions of rotary drill returns were completed by Geological Survey of Wyoming personnel at the drilling sites as the samples were received in 10 -foot intervals. In all cases, the samples were wet and permeated with drilling mud when collected and had to be washed before they could be described. Twenty-one feet of coal core was taken from drill hole TH-4B. Overall, the samples were of poor quality with few large intact chips surviving the drilling process. Despite the poor sample quality, basic lithologic characteristics observed in the samples adequately matched the lithologies picked from the electric and nuclear logs. Coal intervals were easily recognized on both geophysical and lithologic logs.

Because of 1) the delay associated with circulating samples to the surface, 2) the imprecise depth measurement available during drilling, and 3) the fact that circulating drilling fluid can contain samples from anywhere within the drilled interval, slight adjustments were made to the lithology log depths to match the geophysical log depths. Coal intervals were used as an easily identifiable datum. Lithology descriptions were computer processed utilizing Rockware, Incorporated's LOGGER (trademark) program to produce the lithology description and strip-log displays (Appendix A).

Drilling at Rawhide Village revealed that the subdivision is immediately underlain by thin surficial deposits and Tertiary bedrock of the Wasatch and Fort Union Formations. The surficial deposits include sand, gravel, and clinker; rock units are composed of sandstone, siltstone, shale, mudstone, claystone, and subbituminous coal (see lithology descriptions and geophysical logs, Appendix A). Part or all of the Wyodak coal is present in the subsurface beneath the entire subdivision (Figure 5). Throughout the area, the Wyodak coal can be subdivided into two separate, mappable units, referred to informally in this report as the upper and lower Wyodak coal beds. The upper Wyodak coal consists of a single coal bed that ranges from 15 to 35 feet thick. In the central part of the study area, the upper Wyodak has been replaced by paleochannel deposits and is not present (see cross sections (B) and (C), Figure 5). The lower Wyodak coal consists of one or more coal beds separated by relatively thin rock partings. Total thickness of the lower Wyodak ranges from 9 feet to 133 feet; several drill holes penetrated a single, continuous lower Wyodak coal bed over 90 feet thick.

Coal Thickness

The upper Wyodak coal bed is present north, west, and south of the paleochannel area and attains a maximum thickness of 35 feet at drill hole TH-17A (Figure 6). This coal bed is thinnest at drill hole RHV-2004 (13 feet); the coal bed also thins slightly in the southeastern part of the study area. The upper Wyodak has an average thickness of about 28 feet throughout the study area. The paleochannel that replaces the upper Wyodak in the central part of the study area is thought to be related to a large paleochannel system that

Figure 5. Cross sections through Rawhide Village Subdivision (this and facing page). Cross section locations are shown on Figure 2.

300

Figure 6. Isopach map of the upper Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.).
replaces the entire Wyodak (upper and lower coal beds) to the east and northeast of Rawhide Village Subdivision, as described by Law (1976).

A previous interpretation of drill hole information by Jones and others (1987) and Glass and others (1987) considered that the upper Wyodak coal bed was present in drill holes $T H-4 A$ and $T H-4 B$ in the southwestern part of the study area. This report considers the two coal beds present in each of these two drill holes to be part of the lower Wyodak coal bed only; the upper Wyodak coal bed is thought to be replaced by rocks of the paleochannel in the upper part of drill holes $T H-4 A$ and $T H-4 B$ (see cross sections A and E, Figure 5). Because drill holes west and south of $T H-4 A$ and $T H-4 B$ (not shown on cross sections or the maps in this report) do contain both upper and lower Wyodak coal beds, the limits of the upper Wyodak coal bed in this area can be determined.

The lower Wyodak coal bed is present in the subsurface throughout the Rawhide Village Subdivision study area (Figure 7). Maximum thickness occurs in the area around drill holes $T H-6 A, T H-3 A$, and RHV-2002. A rapid thinning of the upper Wyodak occurs in the northeast part of the area near drill holes TH-19A, RHV-2004, and TH-13A. The lower Wyodak there is less than 30 feet thick. In the eastern part of the study area, the top of the lower Wyodak has been eroded and weathered because it is extremely close to the surface (see cross section D and E, Figure 5). The average thickness of the lower Wyodak coal bed, including data points adjacent to the study area, is about 72 feet. The average thickness of the lower Wyodak for just those data points in the Rawhide village Subdivision is about 76 feet.

Figure 7. Isopach map of the lower Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.).

The interburden between the upper and lower Wyodak coal beds (Figure 8) is greatest in the northwestern and northeastern parts of the study area. The areas of thickest interburden are probably related to the repeated influx of clastic material from a major fluvial channel north and northeast of the subdivision (Law, 1976 and Amax Coal Company records). Areas of thin interburden between the upper and lower Wyodak occur in the extreme western and southeastern parts of the study area as well as at drill holes RHV-2004 and TH-13A.

Structure

The upper Wyodak coal bed is structurally highest in the northeastern and south-central parts of the study area, adjacent to the edge of the paleochannel that cuts into the upper Wyodak (Figure 9). The upper Wyodak is structurally lowest in the western part of the study area farthest downdip. Maximum structural relief on top of this coal bed is about 200 feet. A structurally high area with little relief occurs near drill hole $T H-2 A$, immediately south of the edge of the paleochannel. The only prominent structural axis on top of the upper Wyodak is a shallow syncline developed parallel to and north of the edge of the paleochannel near drill hole TH-17A.

The lower Wyodak coal bed is structurally highest in the eastern part of Rawhide Village Subdivision (Figure 10), especially in that part of the study area where the upper Wyodak coal bed is absent. A prominent west-plunging anticline that parallels the south edge of the paleochannel occurs in the southern part of the subdivision. A structural "bench" with relatively gentle structural relief occurs above the 4,200-foot contour in the east-central part of the study area. Other less prominent anticlinal and synclinal folds plunge

Figure 8. Isopach map of interburden between the upper and lower Wyodak coal beds, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.).

Figure 9. Structure contour map on top of the upper Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.).

Figure 10. Structure contour map on top of the lower Wyodak coal bed, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.).
west, west-northwest, and northeast in the northern part of the subdivision. Maximum structural relief on top of the lower Wyodak is almost 240 feet. The configuration of the upper surface of both the lower and upper Wyodak coal beds is related to primary sediment-deposition patterns, differential compaction of sediments, and to a lesser extent, erosion and regional tectonic deformation.

Overburden

Overburden is thickest along the west side of the subdivision and thinnest in the southeast corner (Figure 11). Compared to the structure contour maps of the Wyodak (Figures 9 and 10), overburden is, predictably, thickest where elevation of the Wyodak is lowest and thinnest where the Wyodak coal elevation is highest. In those areas where the upper Wyodak is absent (the paleochannel), overburden is shown on top of the upper Wyodak. Overburden thickness from wells drilled entirely within the subdivision varies from 12 feet at drill hole TH-11A to 162 feet at drill hole $T H-17 A$. Data outside the study area allow projection of overburden isopach lines to over 220 feet in the western part of the study area. The rocks above the upper and lower Wyodak coal beds are primarily claystones, although significant thicknesses of sandstone do occur in overburden above the lower Wyodak in the northwestern part of the subdivision (see lithologic logs in Appendix A). Other significant overburden lithologies include siltstone, shale, and clinker.

Figure 11. Isopach map of overburden on top of the upper Wyodak coal bed and lower Wyodak coal bed where upper Wyodak coal bed is absent, Rawhide Village Subdivision (Sec. 20, T.51N., R.72W.).

References

Glass, G.B., Jones, R.W., and De Bruin, R.H., 1987, Investigation of the potential for near-surface explosive concentrations of methane to occur in the Rawhide Village Subdivision, Campbell County, Wyoming: Geological Survey of Wyoming report for the Wyoming Department of Environmental Quality (unpublished), 7 p., 3 plates.

Jones, R.W., De Bruin, R.H., and Glass, G.B., 1987, Investigations of venting methane and hydrogen sulfide gas at Rawhide Village, Campbell County, Wyoming, in Rawhide II Project Report, Appendix I. Geology: Geological Survey of Wyoming, Laramie, Wyoming (unpublished), 23 p., 12 plates.

Law, B.E., 1976, Large-scale compaction structures in the coal-bearing Fort Union and wasatch Formations, northeast powder River Basin, Wyoming, in R.B. Laudon, editor, Wyoming Geological Association Twenty-Eighth Annual Field Conference Guidebook, 1976, p. 221-256.

McDonald, R.E., 1972, Eocene and Paleocene rocks of the southern and central basins, in Geologic Atlas of the Rocky Mountain Region: Rocky Mountain Association of Geologists, Denver, Colorado p. 243-256.

Martin, L.J., Naftz, D.L.,Lowham, H.W., and Rankl, J.G., 1988, Cumulative potential hydrologic impacts of surface coal mining in the eastern powder River structural basin, northeastern Wyoming: U.S. Geological Survey Water-Resources Investigations Report 88-4046, 201 p.

Warwick, P.D., and Stanton, R.W., 1988, Depositional models for two Tertiary coal-bearing sequences in the Powder River Basin, Wyoming, USA: Journal of the Geological Society of London: London, England, v. 145, p. 613-620.

Appendix A. Geophysical logs and lithologic descriptions.

List of drill holes

Drill hole number Page
TH-1A 25
TH-2A 29
TH-3A 31
TH-4A 33
TH-4B 35
TH-6A 37
TH-10A 38
TH-11A 42
TH-13A 44
TH-14A 47
TH-17A 49
TH-19A 52
TH-22A 56
TH-23A 58

```
    COMP. - completed
    CPS/IN - counts per second per inch
    CPS - counts per second
    T.C. - time constant
    SP - spontaneous potential
    mv - millivolts
```

	Coal	闒	Siltstone	成	Clay and silt
$\begin{aligned} & 20 \\ & 080 \end{aligned}$	Clinker （baked and fused rock）		Shale	N1以	Mudstone
包	Gravel	F	Shale and siltstone	錊	Soil
\square	Sand or sandstone	留	Clay or clayatone		Pavement

[^0]: Fourteen drill holes ranging from 40 feet to 540 feet deep were completed in Rawhide Village Subdivision between July 6 and July 10, 1987, by the Geological Survey of Wyoming (Figure 2). Geophysical logs and lithologic descriptions from this project are presented in Appendix A of this report. Additional drill hole data from monitor wells drilled by Amax Coal Company and subsequently released by the U.S. Bureau of Land Management, Casper District Office were also used in preparing the maps and cross sections in this report (see open circles, Figure 2). Interpretations presented in this report are based on the logs and descriptions and include stratigraphic correlation of coal beds in the area (cross sections); thickness (isopach) maps of the coal beds, interburden, and overburden; and structure contour maps on top of the coal beds. Regional geology

[^1]: Figure 2. Base map of Rawhide Village Subdivision (Sec. 20, T.51N., R.72W -) with surface topography, drill hole locations, and cross secti<n locations.

