
Paleoproterozoic 
Granite and quartz m onz onite and related intrusive rock s 
(1,600–1,800 Ma) 

X gw W hite quartz m onz onite (1,627 ± 4 Ma) 

X gl Luxullianite (1,699 ± 40 Ma) 

X gr R am bler Granite (1,770 ± 3.4 Ma) 

X gs S ierra Madre Granite (1,744–1,763 Ma) 

 Q uartz veins of unk nown age  

X gf S m all felsic intrusive 

 Granite dik es 

X ap Aplite gneiss 

 Lak e Owen layered m afic com plex (1,775.1 ± 3.0 Ma) 

X lm   Magnetite 

X lr  Magnetite gabbro-norite 

X lo  Olivine gabbro 

X lu  Olivine m agnetite gabbro-norite 

X lg  Gabbro-norite 

X ln  Norite 

X lt  Troctolite 

X ll  Layered unit 

X lc  Cyclic succession 

X lb  Border phase  

X gh Horse Creek  foliated granodiorite (1,777 ± 4 Ma) 

X c Mullen Creek  layered m afic com plex (1,777.6 ± 2.1 Ma) 

X ca  Am phibolite 

X cg  Gabbro 

X co  Olivine gabbro 

X e Elk horn Mountain gabbro 

X eo  Olivine gabbro 

X ep  Peridotite 

X v Metavolcanic and m etasedim entary rock s (1,778.4 ± 1.7 Ma) 

X vf Felsic gneiss 

X va Mylonitic biotite augen gneiss 

X vb Migm atitic biotite schist and gneiss in the Medicine Bow 
Mountains 

X vs Mafic schist and gneiss in the Medicine Bow Mountains 

X vq Q uartz-plagioclase gneiss in the Medicine Bow Mountains 

 Am phibole gneiss in the Medicine Bow Mountains 

X vp Pelitic schist in the Medicine Bow Mountains 

X vm  Marble in the Medicine Bow Mountains 

X qa Q uartz-andesine gneiss in the Medicine Bow Mountains 

X qb Q uartz-biotite schist in the Medicine Bow Mountains 

X qc Q uartz-biotite-andesine gneiss in the Medicine Bow 
Mountains 

X z  Encam pm ent R iver Granodiorite (1,779 ± 5 Ma) 

X k  Keystone quartz-diorite (1,784.7± 1.9 Ma) 

X k i Keystone quartz-diorite interlayered with adjacent rock  types 

X k a Keystone quartz-diorite agm atite 

 Green Mountain Form ation, S ierra Madre 

X rv  Mafic m etavolcanic rock s 

X rf  Felsic m etavolcanic rock s 

X rm   Metagraywack e 

X rx  Mixed m etavolcanic and m etasedim entary rock s 

X rc  Chem ical m etasedim entary rock s 

 Mafic intrusive rock s (~1,800 Ma) 

X sa Am phibolite 

X sd Diabase 

X sg Gabbro and m etagabbro 

DESCRIPTION OF MAP UNITS 
Cenozoic 
Q al Alluvium   

Q c Colluvium  

Q b Boulder field, Kennaday Peak  and adjacent areas 

Q bs Block  stream  

Q ls Landslide debris 

Q t Terrace deposits 

Q tg  Gravel-covered terrace 

Q pg  Pedim ent gravels 

Q tp  Terraces with polygonal ground 

Q tgo  North Fork  Little Laram ie R iver glacial outwash 

Q tgo1  Middle Fork  Little Laram ie R iver glacial outwash  

Q g Glacial deposits, undifferentiated 

Q ngt Neoglacial till (Holocene) 

 Pinedale till (Pleistocene) 

Q pu  Upper Pinedale glacial deposits 

Q pm   Middle Pinedale glacial deposits 

Q pl  Lower Pinedale glacial deposits 

Q bl Bull Lak e glacial deposits (Pleistocene) 

Q gp Pre-W isconsin glacial deposits (Pleistocene) 

Q le Loess  

Q u Q uaternary deposits of all types com bined where not 
m apped individually (Pleistocene) 

Qu aternary and Tertiary 
Q Tu Q uaternary and/or Tertiary deposits, undifferentiated 

Q Tg Upland gravels (Pleistocene (?) and Pliocene) 

Tertiary 
Tbp Browns Park  Form ation (Miocene) 

Twr W hite R iver Form ation (Oligocene) 

Twdr W ind R iver Form ation (Eocene) 

Tc Coalm ont Form ation (Eocene and Paleocene) 

Th Hanna Form ation (Paleocene) 

Mesozoic 
Km b Medicine Bow Form ation (Upper Cretaceous) 

Kfl Fox Hills S andstone and Lewis S hale, undivided (Upper 
Cretaceous)  

Km v Mesaverde Form ation (Upper Cretaceous) 

Ks S teele S hale (Upper Cretaceous) 

Kn Niobrara Form ation (Upper Cretaceous) 

Kf Frontier Form ation (Upper Cretaceous) 

Kfm  Frontier Form ation and Mowry S hale, undivided (Upper 
Cretaceous)  

Kft Frontier Form ation, and Mowry and Therm opolis S hales, 
undivided (Upper Cretaceous)  

Km r Mowry S hale ((Upper Cretaceous) 

Kt Therm opolis S hale (Lower Cretaceous) 

Km c Therm opolis S hale including Muddy S andstone Mem ber and 
Cloverly Form ation, undivided (Lower Cretaceous)  

Kcv Cloverly Form ation (Lower Cretaceous) 

Ku Cretaceous units, undivided 

KJ Cretaceous and J urassic units, undivided  

J m s Morrison and S undance Form ations, undivided (J urassic) 

^jc J elm  and Chugwater Form ations, undivided (Triassic) 

Mesozoic and Paleozoic 
^Pu J elm  and Chugwater Form ations (Triassic), and Goose Egg 

Form ation, Forelle Lim estone, and S atank a S hale (Perm ian), 
undivided  

^Pcs Chinle and Chugwater Form ations (Triassic), and S atank a 
S hale (Perm ian), undivided  

^Pg Goose Egg Form ation (Triassic and Perm ian)  

MzPz Mesoz oic and Paleoz oic units, undivided 

Paleozoic 
Pfs Forelle Lim estone and S atank a S hale (Perm ian) 

P*c Casper Form ation (Perm ian and Pennsylvanian) 

*f Fountain Form ation (Pennsylvanian) 

*Mu Am sden Form ation (Pennsylvanian) and Madison Lim estone 
(Mississippian), undivided 

Mesoproterozoic 
 Dik e  

Y s S herm an Granite (1,433 ± 1.5 Ma)  

 Pegm atite (1,514 ± 36 Ma) 

Mesoproterozoic and Paleoproterozoic 
Rocks within or sou th of the Cheyenne belt 

 Pegm atite (1,510–1,763 Ma) 
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INTRODUCTION 
 

This geologic map of the Saratoga 1:100,000-scale metric topographic quadrangle was first 

released as Wyoming State Geological Survey (WSGS) Open File Report 04-10, which was 

prepared in cooperation with the U.S. Geological Survey 2003 STATEMAP Cooperative 

Agreement # 03HQAG0097. This open-file report consisted of three color sheets, each 

emphasizing different groups of rocks, and was not in digital form. The three sheets were then 

digitized as part of the U.S. Geological Survey 2004 STATEMAP project under Cooperative 

Agreement # 04HQAG0045, but because the maps were only reviewed for accurate digitizing 

and correct attribution and not for technical content and other standards for the WSGS map 

series, the original open file report number, 04-10 is retained. The final digital map, after formal 

editorial reviews are completed, will eventually be converted to a WSGS map series and 

assigned a number in that series. The final map products will consist of a CD-ROM containing 

all the digital map files and a geologic report as well as a color geologic map printed on-demand.    

 

The Saratoga (1:100,000) sheet is located in southeastern Wyoming, enclosing the 

communities of Albany, Centennial, Encampment, Fox Park, Keystone, New Jelm, Riverside, 

Saratoga, and Woods Landing. A large part of the Medicine Bow Mountains, the Sierra Madre 

Range, the Platte River valley and the extreme western edge of the Laramie basin lie within the 

map area. A major portion of the Medicine Bow National Forest lies within the Saratoga sheet 

surrounding the Savage Run, Platte River, Encampment River and part of the Huston Park 

wilderness areas.  

 

The Saratoga 1:100,000 sheet encloses much of the Medicine Bow Mountains, a large part of 

the Sierra Madre, and also a significant portion of the Platte River valley, and the extreme 

western margin of the Centennial valley. These mountain ranges were uplifted during the 

Laramide orogeny, and erosion removed the overlying Phanerozoic sediments. However, 

deformed Phanerozoic sediments are preserved along the margins of the uplifts in the adjacent 

Platte River and Centennial valleys. These sedimentary rocks include rock units ranging from 

Pennsylvanian to Tertiary in age. 

The Medicine Bow Mountains and Sierra Madre are Precambrian-cored Laramide uplifts.  

The margin of the Wyoming Province (or craton) is exposed in these mountains within the 

Saratoga 1:100,000. According to Eggler and others (1988), the Wyoming craton was established 

by 2.7 Ga, but was later affected by a regional metamorphic event recorded at 1.9 to 1.7 Ga.  

The southern boundary of the Wyoming Province terminates against the Mullen Creek-Nash 

Fork shear zone. This shear, which forms part of the Cheyenne belt suture, represents a 
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continental-arc collision zone (Graff, 1978; Hills and Houston, 1979) separating the Wyoming 

Province to the north from cratonized (1.7 Ga) Proterozoic basement of the Colorado Province to 

the south. The Colorado Province south of the suture consists of volcanogenic island-arc 

basement rocks, intrusive granites and gabbroic complexes.  These gabbroic complexes include 

two of the larger layered mafic complexes in the western US, the Lake Owen and Mullen Creek 

complexes. To the north, the Wyoming Province includes amphibolite grade schists and gneisses 

that are overlain by younger Archean and Proterozoic metasedimentary and metaigneous rocks. 

Thirty-two 1:24,000 quadrangles that comprise the Saratoga 1:100,000 scale map are listed 

as follows:  Albany, Barcus Peak, Blackhall Mountain, Centennial, Cow Creek, Cow Creek 

Ranch, Dudley Creek, Elkhorn Point, Encampment, Finley Reservoir, Foxpark, Gunst Reservoir, 

Horatio Rock, Indian Rocks, Kennaday Peak, Keystone, Lake Owen, Medicine Bow Peak, 

Morgan, Overlook Hill, Phantom Lake, Red Mountain, Rex Lake, Ryan Park, Sand Lake, 

Saratoga, Solomon Creek, Strouss Hill, Trent Creek, Turpin Reservoir, Walck Ranch, and 

Woods Landing. 

 

ECONOMIC GEOLOGY  

The Medicine Bow and Sierra Madre Mountains are underlain by the southern margin of the 

Wyoming Archon (>2.5 Ga) and cratonized Proterozoic (<2.5 Ga) metaigneous and 

metasedimentary rocks of the Colorado Province. The boundary between these two Precambrian 

terrains is formed of highly fractured cataclastics including rock with strong linear fabric such as 

mylonites and ultramylonites as well as numerous faults and shear zones. This boundary zone, 

referred to as the Mullen Creek-Nash Fork Shear zone and more recently as the Cheyenne belt, is 

in places, mapped over widths as much as several miles.   

Fractures associated with this belt, as well as with subsidiary fractures north and south of the 

belt, are considered favorable zones for hosting mineral deposits. Those fractures that are deep-

seated are considered to be favorable conduits for diamondiferous kimberlite, diamondiferous 

lamproite, and or diamondiferous lamprophyre as well as other mineral deposits. Due to the 

favorable geology, the entire region, including the Saratoga basin, is considered to have high-

potential for the discovery of diamond (gem and industrial) deposits. This is further emphasized 

by the presence of the State Line and Iron Mountain kimberlite districts lying immediately east 

of the Saratoga 1:100,000, both of which have yielded diamonds and represent the two largest 

kimberlite districts in the US (Hausel, 1998; Hausel and others, 1979; 1981, 2003). Furthermore, 

diamonds have been recovered within the Saratoga Sheet on Cortez Creek in the Medicine Bow 

Mountains and at least one diamond was recovered from a Precambrian metaconglomerate 

during gold exploration in the 1980s. Even though much of the region remains unexplored for 

diamond, several kimberlitic indicator mineral anomalies have been identified providing 

additional physical evidence for hidden kimberlites within the region.    

Examination of air photos during the compilation of the Saratoga 1:100,000 sheet identified 

75 vegetation anomalies that appear similar to vegetation anomalies associated with kimberlitic 

soils in both the State Line and Iron Mountain kimberlite districts. Although anomalous 

vegetation is not in itself confirmation of a kimberlitic intrusion, in the presence of indicator 

minerals and isolated placer diamonds within the map area suggests that these anomalies might 

be a starting point for on the ground investigations including geophysical research, stream 

sediment sampling and shallow drilling. Very few of these vegetation anomalies have been 
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examined on the ground to date, and no conclusion as to their origins could be made during 

reconnaissance. The locations of these anomalies are marked on the map with an asterisk ( * ). 

Although scattered mineralization has been found throughout the region, the broad region 

underlain by sheared rocks of the Cheyenne Belt is especially abundant with prospects and 

mines. The presence of common mineralization in this area is thought to be primarily due to the 

increased permeability of the rocks due to shearing. This is especially prevalent in the area near 

Encampment in the northwestern part of the map. 

South of the Cheyenne Belt, volcanogenic island arc volcaniclastics provide excellent hosts 

for magmatic massive sulfide mineralization (copper, zinc, lead, silver, gold), and some shear 

zone copper, gold, and associated gold placers. Some volcanogenic massive sulfide deposits 

occur in and around the Huston-Fletcher Park region (bordering the Saratoga quadrangle to the 

southwest).  

North of the Cheyenne Belt, metaconglomerates found in several of the Precambrian units 

are considered potential sources for uranium and thorium. Similarities of these rocks to the gold-

rich quartz-pebble metaconglomerates of the Witwatersrand, South Africa, indicate that they also 

have potential as gold hosts. At least one sample of metaconglomerate collected in the 1970s 

yielded 10 ppm Au. These conglomerates are also considered to be potential hosts for significant 

copper-gold-silver mineralization. This is based on the presence of a significant copper deposit in 

a sheared metaconglomerate at the Ferris-Haggarty mine in Deep Lake Group metasediments 

immediately west of the Saratoga sheet. The Ferris-Haggarty was considered to be one of the 

more important copper deposits in the world in the early 1900s. This conglomerate also yields 

anomalous silver and gold. 

Layered mafic-ultramafic intrusives, ultramafic massifs and fragments with anomalous 

platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu), titanium (Ti), chromium (Cr), 

and vanadium (V) anomalies occur within the Proterozoic terrain – most notable are the Mullen 

Creek, Lake Owen, and Puzzler Hill complexes. The Mullen Creek mafic-ultramafic complex in 

the Medicine Bow Mountains hosts one of the only known historic Pt-Pd mines in North 

America, known as the New Rambler mine. This property lies adjacent to the Savage Run 

Wilderness (see Keystone Quadrangle), and the host ultramafic-mafic complex extends into the 

nearby Savage Run wilderness. The complex is considered to have high potential for the 

discovery of platinum-palladium (important precious and strategic metals) mineralization. 

East of the Mullen Creek complex, the Lake Owen layered mafic complex is a Proterozoic 

gabbroic intrusion which hosts significant mineralization. Loucks and Glasscock (1989) noted 18 

cyclic units within the Lake Owen complex that were defined by large scale repetitions of two or 

more lithologic units, and by compositional variations in the rock mineralogy. At least 12 

stratigraphic horizons in the complex exhibit cumulus sulfide mineralization: four of which are 

known to contain PGE + Au at grades > 1 ppm (part per million)! One bornite-rich stratiform 

unit with anomalous Au + Pt +Pd is continuous for at least 2 km, while similar mineralization in 

another unit extends for 10 km! Loucks and Glascock (1989) also examined the vanadiferous 

magnetite horizons within the complex. An estimate of surface mineable oxide cumulates of 1.4 

billion tons valued at $33 billion was made in 1988! This does not include the titanium, platinum 

group metals or gold values within the complex, which potentially could have greater value. 

The Big Creek district in the southern Medicine Bow Mountains produced some copper and 

rare earth minerals from pegmatites during the 1940s. Much of the surface within the Saratoga 
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1:100,000 was prospected during the late 1800’s and early 1900’s (see Hausel, 1989, 1997 and 

Hausel and Sutherland, 2000). Many areas show an almost continuous coverage by historic 

prospects and mines. Even though most mines and prospects were not developed to any great 

extent, a few yielded attractive base and/or precious metal assays and were developed into 

commercial ventures. These included the Doane-Rambler, Keystone, New Rambler, Centennial 

and Douglas Creek mines. Several other mines were also developed within the map area on a 

smaller scale than these; and of course, there were many failures. 

It should be noted that there is no evidence that any of the significant commercial mines 

(with the exception of the Centennial), were ever mined out. Mine operations ceased at many of 

these mines due to a variety of circumstances including declining metal prices and values, ore 

complexity below the zone of oxidation, outbreak of war, and other political or human-related 

factors. The Centennial mine ceased operations because the mineralized lode was off-set by 

faulting - the extension of the ore deposit was never found. The various deposits in the region 

were explored or mined for copper, gold, silver, lead, zinc, rare earth metals, mica, beryl and 

other industrial minerals. Potential for other gemstones (other than diamond) must also be 

considered as ruby has been identified associated with some vermiculite deposits in the region, 

and another transparent ruby and transparent green beryl were both recovered from a pegmatite 

from an undisclosed location in the Sierra Madre in the relatively recent past. 

 

 

GEOLOGIC MAP UNITS 
 

The geology for the Saratoga quadrangle was compiled from existing mapping and 

supplemented by aerial photo interpretation and cursory field checks. The rock units described 

here apply to the thirty-two 1:24,000 scale quadrangles that comprise the Saratoga 1:100,000 

scale quadrangle. These rock units were generalized and combined. Most contacts on the 

1:24,000 scale quadrangles are approximate, but are shown as solid lines, rather than dashed, for 

clarity and ease of compilation. 

 

 

QUATERNARY 

 

Alluvium (Qal):  Alluvium comprises unconsolidated sand, silt, clay, coarse gravels and 

cobbles, located in and along most drainages. This unit, compiled from many sources including 

air photo interpretation, may include eluvial deposits, slope wash and small alluvial and colluvial 

deposits (Qc) along drainages. 

 

Colluvium (Qc):  Colluvial deposits; may include some alluvial deposits. This also includes 

talus deposits mapped by Oviatt (1977) in his glacial study of the Snowy Range area in the 

Medicine Bow Mountains. 

 

Boulder field capping Kennaday Peak and adjacent ridges and slopes (Qb):  Dominately 

boulder-size, angular to subangular metamorphic rock fragments that include quartzite, gneiss, 

amphibolite and schist capping Kennaday Peak and Cedar Pass Ridge (Barton, 1974). Mears 

(2001) considered at least part of this boulder cap to be pre-Bull Lake glacial till. 

 

Block stream (Qbs):  Block streams, also known as rock streams, a commonly linear type of 

mass movement of rock fragments associated with frost action, found at high altitudes or in 
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periglacial areas, were identified in aerial photo interpretation in west-central Medicine Bow 

Mountains. 

 

Landslide debris (Qls):  Locally derived landslide debris from unstable, generally steep slopes. 

This map unit was compiled from many sources (see references) and supplemented by air photo 

interpretation.  

 

Terrace deposits (Qt):  Gravel covered terrace (Qtg), and/or cobble, sand, gravel and silt- 

covered terraces along mountain flanks and drainages. These terraces merge in places with 

eluvial, alluvial and colluvial deposits. Different terrace levels were not designated, although 

some areas have multiple levels of terraces. Some terraces may be equivalent to previously 

mapped geologic quadrangles as pediment gravels (Qpg). Widespread terraces were noted in the 

Saratoga Valley, but were not mapped due to time constraints. Terraces exhibiting apparent 

polygonal ground, indicative of intensive frost action, in aerial photographs in the Ryan Park – 

Kennaday Peak area are designated (Qtp). Glacial outwash terraces from the North Fork Little 

Laramie River (Qtgo) and glacial outwash terraces from the Middle Fork Little Laramie River 

(Qtgo1) are after Blackstone (1969) 

 

Glacial deposits undifferentiated (Qg): Detailed mapping of glacial deposits is lacking in 

many areas, but their general extent has been mapped in many areas (Houston, 1968; Houston, 

1977; Houston and Childers, 1977; Houston, McCallum, and Childers, 1977; Mears, 2001; 

Snyder, 1980). This designation includes all types of glacial deposits, but is dominated by 

moraines. 

 

Holocene Neoglacial till (Qngt): This till was mapped by Oviatt (1977) in the Snowy Range 

area of the Medicine Bow Mountains and may include some alluvium and colluvium. 

 

Pleistocene Pinedale till: This includes till mapped by Oviatt (1977 in the Snowy Range area of 

the Medicine Bow Mountains, and deposits mapped in the Cow Creek drainage of the Sierra 

Madre by Price (1973).Subdivisions mapped by Price (1973) include: Upper Pinedale glacial 

deposits (Qpu); Middle Pinedale glacial deposits (Qpm); and Lower Pinedale glacial deposits 

(Qpl). 
 

Pleistocene Bull Lake glacial deposits (Qbl): Deposits mapped in the Cow Creek drainage of 

the Sierra Madre by Price (1973); in the Turpin Reservoir area by Saulnier (1968) with 

adjustments using aerial photo interpretation; and near Centennial, after Mears (2001). Bull Lake 

glacial deposits are shown in several other areas on a general area map by Mears (2001) 

including an extensive moraine north of Ryan Park, the southern part of Libby Flats, and 

locations north of the Snowy Range and west of Sand Lake, but sufficient details were not 

available to map them separately in this compilation. 

 

Pleistocene Pre-Wisconsin glacial deposits (Qgp): Deposits mapped in the Cow Creek 

drainage of the Sierra Madre by Price (1973). Pre-Bull Lake glacial deposits are shown on a 

general area map by Mears (2001) including the top of Kennaday Peak, several locations on 

Rock Creek Ridge (after Blackstone, 1975), and west of Centennial, but sufficient details were 

not available to map them separately in this compilation. 

 

Loess (Qle): Deposits mapped in the Saratoga Valley by Houston (1968) 
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Undifferentiated Quaternary deposits (Qu):  Quaternary deposits of all types combined where 

not mapped individually 

 

 

QUATERNARY / TERTIARY 

 

Undifferentiated Quaternary and/or Tertiary deposits (QTu) – Undifferentiated deposits 

may include alluvial, colluvial, terrace, landslide, and glacial deposits, and outcrops of various 

Tertiary formations. A small area of rocks originally identified by Montagne (1954) near the 

North Fork of Big Creek as ‘Miocene- Pliocene undivided’ is included within this unit. In the 

southern Sierra Madre, near the Colorado border, this unit also encompasses large areas of both 

the Miocene Browns Park Formation and Pleistocene Glacial till (Snyder, 1980; Houston and 

Graff, 1995), however details were unavailable for the separation of these units during this 

project. 

 

Pliocene-Pleistocene (?) upland gravels (QTg) – Includes upland surfaces veneered with 40 to 

200 feet of gravel and boulders in the Medicine Bow Mountains northeast of and southeast of 

Keystone (McCallum, 1964; Currey, 1965; McCallum and Orback, 1968; Houston, 1968; and 

Coalson, 1971). Also included in this designation are small outcrops of conglomerate mapped by 

Ferris (1964) 1.5 miles southeast of Encampment that he identified as ‘Tertiary (?)’; the actual 

age of these deposits are unknown. 

 

 

TERTIARY 

 

Miocene Browns Park Formation (Tbp):  The Browns Park Formation crops out primarily in 

the Saratoga Valley, but is also found as small outcrops in many areas of the Medicine Bow 

Mountains and Sierra Madre. Some early work identified many Browns Park outcrops as North 

Park Formation, but re-evaluation indicates that these are probably all North Park Formation 

(Snyder, 1980; Montagne, 1991). The Browns Park, exceeding 2400 feet in thickness, is variable 

in lithology, and includes tan, gray, and olive drab calcareous to siliceous sandstone and 

siltstone, with some thin limestones and white pumicite beds. A loosely consolidated, cross-

bedded and sandy, ferruginous conglomerate containing Precambrian boulders up to three feet in 

diameter is prominent near the base of the formation, and is easily traced throughout the northern 

part of the Saratoga Valley (Montagne, 1991). Outcrops of the Browns Park Formation in the 

southern Sierra Madre, particularly in the Hog Park area are included in Undifferentiated 

Quaternary and/or Tertiary deposits (QTu) due to lack of details available for this mapping 

effort. Montagne’s (1954) small outcrop of ‘Miocene/Pliocene undivided’ in the Blackhall 

Mountain area is included within the Brown’s Park Formation. 

 

Oligocene White River Formation (Twr):  The White River Formation is found in several 

small outcrops scattered across the map area. Lithologically, it is poorly cemented with calcium 

carbonate and consists of white to light-gray, tuffaceous, fine-grained siltstone, clay, and shale, 

with some orangish colored layers, and occasionally with minor amounts of angular igneous and 

metamorphic rock fragments (Swetnam, 1961: Houston, 1968; Montagne, 1991). 

 

Eocene Wind River Formation (Twdr):  The Wind River Formation crops out along the 

northeast side of the Medicine Bow Mountains, and in the extreme northeast corner of the map, 

and consists of varicolored claystone, arkosic sandstone, and local conglomerate (Blackstone, 

1969). 
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Eocene/Paleocene Coalmont Formation (Tc):  This formation crops out in the southern 

Saratoga Valley for about six miles along the east flank of the Sierra Madre, and in places rests 

unconformably on Precambrian rock. The Coalmont consists of calcareous, brown, friable, cross-

bedded arkosic sandstone, claystone, and carbonaceous shale that grade upward into coarse 

conglomerate that includes gneissic boulders up to 12 feet in diameter (Montagne, 1991). To the 

south in the North Park Basin, the Coalmont is as much as 7000 feet thick. 

 

Paleocene Hanna Formation (Th):  Houston (1968) referred to this unit as possibly including 

the Tertiary/Cretaceous Ferris Formation, although the Ferris is considered by some to occur 

much farther to the north of the Saratoga quadrangle. The Hanna Formation is made up of 

rounded to subrounded boulders, cobbles, and pebbles embedded in a friable matrix of yellow 

medium-grained arkosic sandstone (Montagne, 1991). To the north of the map area, near Hanna, 

the formation thickness reaches 7000 feet, includes thick coal beds, and unconformably overlies 

all pre-Tertiary formations.  Barton (1974) reported the largest boulders in the Hanna to be about 

a foot in diameter, and cited a thickness of about 1500 feet near Kennaday Peak. On the eastern 

flank of the Medicine Bow Mountains, Blackstone (1970) described a coarse basal conglomerate 

of subrounded quartzite cobbles and boulders, and noted zones of large brown sandstone 

concretions. 

 

 

MESOZOIC 

 

Upper Cretaceous Medicine Bow Formation (Kmb):  The Medicine Bow Formation consists 

of more than 400 feet of interbedded brown sandstone with some iron-stone concretions, coal, 

and black carbonaceous shale. Coal beds are common at the base (Houston, 1968; Blackstone, 

1970). The formation hosts one conglomerate bed with cobbles of underlying sedimentary rock 

(Houston, 1968). 

 

Fox Hills Sandstone and Lewis Shale undivided (Kfl): The upper 400 feet of this 2200-2600 ft 

thick unit is fine-grained gray sandstone; the middle part is interbedded fine-grained gray 

sandstone and shale; the basal part is predominantly light gray shale (Blackstone, 1970). Houston 

(1968) also notes local coal beds and zones of large iron-stone concretions. 

 

Upper Cretaceous Mesa Verde Formation (Kmv):  The 1300-1500 ft thick Mesa Verde is 

made up of the cross-bedded, gray, coal-bearing Pine Ridge Sandstone at the top. This is 

underlain by coal and carbonaceous shale; brown siltstones and gray shales that comprise the 

middle. Thick yellow to brown concretionary sandstone is found near the base (Blackstone, 

1970). 

 

Upper Cretaceous Steele Shale (Ks):  This 2600-2900 ft thick unit is predominantly dark-gray 

marine shale, sandy in the upper part with interbedded thin, fine-grained buff sandstones in the 

upper part. A persistent sandstone, 1300 feet above the base, is locally referred to as the Shannon 

sandstone (Houston, 1968; Blackstone, 1970). 

 

Upper Cretaceous Niobrara Formation (Kn):  The Niobrara is 500 feet of highly fossiliferous, 

predominantly gray calcareous shale, interbedded with cream to yellow and orange weathered 

silty limestone (Houston, 1968; Blackstone, 1970). The thickness increases to 700 feet near 

Kennaday Peak (Barton, 1974). 
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Upper Cretaceous Frontier Formation (Kf):  The Frontier consists of 450 feet of dark-gray 

marine shale interbedded with thin bentonites, and is topped with the 10 ft thick Wall Creek 

Sandstone Member (Houston, 1968; Blackstone, 1970). Septarian concretions are found near the 

base. This formation is as much as 650 feet thick in the northwestern Medicine Bows (Barton, 

1974). 

 

Frontier Formation and Mowry Shale undivided (Kfm):  The Frontier Formation and the 

Mowry Shale were mapped as one unit in the Rex Lake Quadrangle by Blackstone (1970). 

 

Frontier Formation, Mowry Shale, and Thermopolis Shale undivided (Kft):  These units 

were mapped together as one unit, the Benton group, by Houston (1968), and are combined 

where separate outcrops cannot be distinguished at the 1:100,000 scale. 

 

Upper Cretaceous Mowry Shale (Kmr):  Silver-gray weathered, black siliceous shale with 

common fossil fish scales. Numerous bentonite beds dominate the 150 foot thick Mowry Shale 

(Houston, 1968; Blackstone, 1970). 

 

Lower Cretaceous Thermopolis Shale (Kt):  The 20 foot thick, clean, medium-grained Muddy 

Sandstone Member tops 110 feet of black marine shale containing thin, lenticular brown to olive-

green sandstone layers (Houston, 1968; Blackstone, 1970). 

 

Thermopolis Shale including Muddy Sandstone Member and Cloverly Formation 

undivided (Kmc):  Rex Lake Quadrangle, Blackstone (1970). 

 

Lower Cretaceous Cloverly Formation (Kcv):  The 150 foot thick Cloverly Formation hosts a 

distinct white, cross-bedded, conglomeratic sandstone at its base, overlain by a pink siltstone in 

the middle, which is in turn overlain by a rusty to yellow sandstone at the top (Houston, 1968; 

Blackstone, 1970). 

 

Cretaceous undivided (Ku):  Cretaceous units within some parts of the Rex Lake Quadrangle 

were not separated during mapping by Blackstone (1970). 

 

Cretaceous and Jurassic undivided (KJ):  These units are combined in the Lake Owen area 

where outcrops are too small to depict individually at the 1:100,000 scale. 

 

Morrison and Sundance Formations undivided (Jms):  The Upper Jurassic Morrison 

Formation consists of 300 feet of white sandstone beds near the top that are underlain by 

variegated, purple, green, and maroon claystone and shale with abundant green chert. Locally 

present are fragments of dinosaur bones and calcareous nodules (Houston, 1968; Blackstone, 

1970). This unit is roughly 600 feet thick in the northwestern Medicine Bows according to 

Barton (1974). 

 

The Middle Jurassic Sundance Formation as described in the Southeastern Medicine Bows 

contains about 50 feet of white to pale yellow, cross-bedded and ripple-marked calcareous 

glauconitic sandstone, along with some oolitic limestone and gray and green shale in the lower 

part in more northern exposures, with abundant fossil Pachyteuthis densus (which are thick 

walled belemnite rostrum) in upper part (Houston, 1968: Blackstone, 1970; Houston and Orback, 

1976). In the northwestern Medicine Bows, the Sundance is about 190 feet thick (Barton, 1974). 
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Upper Triassic Jelm Formation and Triassic Chugwater Formation undivided (^jc):  The 

Jelm Formation is 130-250 feet of orange and red siltstone and sandstone overlying distinctive 

clay-pebble conglomerate, which may include fragments of vertebrate bones and crocodile teeth 

(Houston, 1968; Blackstone, 1970; Love and others, 1993). Within the Lake Owen Quadrangle, 

this unit also includes the Canyon Springs Sandstone Member of the Sundance Formation 

(Houston and Orback, 1976). 

 

On the east side of the Medicine Bow Mountains, the Chugwater Formation is composed of 550 

feet of thinly bedded calcareous red shales, siltstones, and local thin sandstones, with some thin 

beds of limestone and gypsum; lower beds are Permian (Houston, 1968; Blackstone, 1970; 

Houston and Orback, 1976). In the Centennial Valley, this includes the unit referred to by 

Houston and Orback (1970) as the ‘Red Peak Member of the Chugwater Formation and the 

upper Goose Egg Formation undivided.’ On the west side of the Medicine Bows, near Kennaday 

Peak, the Chugwater is as much as 1200 feet thick (Barton, 1974). 

 

 

PALEOZOIC/MESOZOIC 

 

Triassic Jelm and Chugwater Formations, and Permian Goose Egg, Forelle, and Satanka 

Formations undivided (^Pu):  These units were mapped together in the vicinity of Kennaday 

Peak by Houston (1968). 

 

Triassic Chinle, Chugwater (Red Peak Member), and Permian Satanka Formations 

undivided (^Pcs): These grouped formations include more than 800 feet of red siltstone, shale, 

mudstone, and clay-pebble conglomerate southeast of Hog Park in the southern Sierra Madre, 

Jackson County, Colorado (Snyder, 1980). 

 

Permian/Triassic Goose Egg Formation (^Pg):  The Goose Egg Formation, shown in the 

northern parts of the quadrangle, is equivalent to the lower part of the Chugwater Formation in 

combination with the Forelle Limestone and Satanka Shale that crop out along the southeastern 

flank of the Medicine Bow Mountains (Houston, 1968; Love and others, 1993). The Goose Egg, 

about 120 feet thick, is made up of orangish-red gypsiferous shale and siltstone interbedded with 

gypsum layers and gray to purple dense platey limestone and dolomite members that contain 

abundant chert layers (Houston, 1968; Blackstone, 1970; Barton, 1974; Houston and Orback, 

1976). 

 

Paleozoic and Mesozoic units undivided (MzPz):  Small areas of Paleozoic and Mesozoic 

formations in the northern Saratoga Valley were not subdivided when mapped by Montagne 

(1954 & 1991). Other combined outcrops of these units are shown along the east flank of the 

Medicine Bow Mountains. 

 

 

PALEOZOIC 

 

Permian Forelle Limestone and Satanka Shale undivided (Pfs):  These units are combined 

within the Lake Owen Quadrangle (Houston and Orback, 1976) where the Forelle is too thin to 

map separately. The Forelle is a distinct and resistant 10-20 foot thick lavender to gray and 

white, crenulated limestone that often contains thin red to gray shale or siltstone in the middle 

(Houston, 1968; Blackstone, 1970; Houston and Orback, 1976). The Satanka Formation is made 

up of 120-220 feet of orange to red siltstones and shales that contain thin lenticular beds of 
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gypsum, limestone, and ferruginous sandstone (Houston, 1968; Blackstone, 1970; Houston and 

Orback, 1976). 

 

Pennsylvanian/Permian Casper Formation (P*c):  The Casper Formation, as much as 320 

feet thick, is made up of an upper yellowish to pink, calcareous, fine- to medium-grained, cross-

bedded sandstone, a middle hard red and gray siltstone with some thin limestone beds, and a 

lower white and red cross-bedded sandstone (Houston, 1968; Blackstone, 1970; Houston and 

Orback, 1976). The Casper Formation is about 150 feet thick in the vicinity of Kennaday Peak in 

the northwestern Medicine Bow Mountains (Barton, 1974). 

 

Pennsylvanian Fountain Formation (*f):  The Fountain Formation represents 400 to more 

than 500 feet of predominantly pink to maroon calcareous arkosic sandstone, and contains 

additional beds of light-purple arkose, gray sandstone, red siltstone, red shale, and white 

limestone, with a few interbedded conglomerates (Houston, 1968; Blackstone, 1970; Houston 

and Orback, 1976). The Fountain Formation crops out along the eastern Flank of the Medicine 

Bow Mountains, and along the flanks of Sheep Mountain in the eastern part of the quadrangle. 

 

Pennsylvanian Amsden Formation and Mississippian Madison Limestone undivided 

(*Mu):  The Amsden Formation, varying from 5 to 30 feet thick, and the Madison Limestone, 

about 10 feet thick, crop out in the northwestern Medicine Bow Mountains in the north-central 

part of the quadrangle. The white to gray and lavender Madison Limestone at the base of this 

map unit is overlain by the Amsden’s red shale which contains banded chert nodules (Houston, 

1968; Barton, 1974). 

 

 

PRECAMBRIAN 

 

Terminology and unit designations are based on those used by Houston, Karlstrom, Graff, and 

Flurkey (1992) for the Sierra Madre and Medicine Bow Mountains, with details added from 

numerous other sources shown in the attached references.  

 

 

 

Mesoproterozoic 
 

Proterozoic dikes (Yd):  Fine- to medium-grained, pink granitic dikes that although not dated, 

are considered to be related to the Sherman Granite. These dikes are common in the Lake Owen 

area (Houston and others, 2003). This includes some dikes described by Houston and others 

(1968) as granitic dikes that may be of more than one age, and dikes of white to pink fine-

grained rhyolite and porphyritic quartz latite. 

 

Sherman Granite 1,433 ± 1.5 Ma (Ys):  Pink, coarse-grained to pegmatitic microcline granite, 

dated at 1,433 ± 1.5 Ma by Frost and others (1999). The Sherman is typically equigranular with 

medium-grained characteristics more abundant near contacts, but a younger coarse-grained 

porphyritic phase is also present (McCallum and Houston, 1985). 

 

Contacts are typically sharp where older rocks are locally cut by sills and dikes of the Sherman 

Granite. Plagioclase, microcline, and quartz tend to be equicrystalline, but biotite is highly 

variable in size. Based on crystal form, some biotite appears to replace hornblende or tourmaline. 

Local hybridization of both granite (more abundant potassium feldspar) and country rock (more 
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abundant amphibole and biotite) occurs where the granite is in contact with mafic hosts. 

Stretched and flattened xenoliths of earlier rock types are common but nowhere abundant. Where 

sheared and brecciated, the Sherman Granite is locally enriched in epidote and quartz and is a 

very deep red, which could be confused with the older granite. 

 

pegmatite 1,514 ± 36 Ma (Yp):  Pink to white granite pegmatite consisting principally of K-

feldspar and quartz, and may be of more than one age (Houston and others, 1968). A pegmatite 

in the Woods Landing quadrangle has a reported U-Pb age of 1,514 ± 36 Ma (Campbell and 

Shelton, in press). 

 

 

Mesoproterozoic and Paleoproterozoic 
 

Rocks within or south of the Cheyenne belt 

 

pegmatite, 1,510-1,763 Ma (Xp): Granite pegmatite found both in and marginal to the Sierra 

Madre Granite and the white quartz monzonite and, although younger, may be genetically related 

to both. It is also present as discrete bodies in metavolcanic and metasedimentary rocks in the 

southern Sierra Madre, and may make up as much as 50 percent of the exposures in some areas 

of white quartz monzonite or biotite gneiss (Houston and Graff, 1995). Areas exhibiting 

abundant pegmatites are designated with a dotted pattern on the map. 

 

Houston and others (1978) described several types and episodes of pink to white granite 

pegmatite both north and south of the Mullen Creek-Nash Fork shear zone in the Medicine Bow 

Mountains (Houston and others, 1968). Houston and others (1989) report Rb-Sr isochrons for 

pegmatites in the Medicine Bows of 1,510 ± 40 Ma, 1,565 ± 40 Ma, and 1,620 ± 40 Ma, after 

Hills and others (1968). 

 

 

Paleoproterozoic 
 

 

granite and quartz monzonite and related intrusive rocks 1,600-1,800 Ma (Xg): Includes 

Houston & Karlstrom’s (1992) quartz monzonite gneiss (medium- to coarse-grained, pink to buff 

to gray gneiss consisting of equal amounts of quartz, potash feldspar, and plagioclase), alaskite, 

and pink gneissic granite, which forms a gradational contact with migmatitic biotite schist and 

gneiss in the Medicine Bow Mountains. 

 

white quartz monzonite, 1,627 ± 4 Ma (Xgw):  Medium- to coarse-grained, white to light gray 

quartz monzonite that intrudes the Sierra Madre Granite and is dated by Premo and Van Schmus 

(1989) as 1,627 ± 4 Ma, using the uranium/lead zircon method (Houston and Graff, 1995). 

 

luxullianite 1,699 ± 40 Ma (Xgl):  Medium-grained, pink to pinkish-white, tourmaline-rich (up 

to 30%) generally concordant bodies intruded into mylonite gneiss and amphibolitized 

metaigneous rocks in the northeastern part of the Keystone quadrangle near the New Rambler 

mine. The mineralogy, in order of relative abundance, includes: plagioclase (albite), quartz, 

microcline, tourmaline, muscovite, sericite, and garnet. Black tourmaline (schorl) varies from 

microscopic needles in quartz to euhedral crystals several millimeters long in aphanitic rocks, to 

crystals several inches long in pegmatitic phases. McCallum and Orback (1968) and Coalson 

(1971) suggest that this may be a late phase of the Rambler granite. Hills and Houston (1979) 
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report a Rb-Sr whole rock isochron of 1,699 ± 40 Ma for the luxullianite, which could be revised 

using more precise modern techniques. 

 

Rambler Granite, 1,770.8 ± 3.4 Ma (Xgr):  The medium-grained, pink Rambler Granite is a 

relatively small and highly irregular stock exposed northeast of the New Rambler Mine in the 

northeastern part of the Keystone quadrangle (McCallum and Orback, 1968; Coalson, 1971). The 

granite, which exhibits both conformable and cross-cutting relationships with surrounding rocks, 

consists of quartz, potash feldspar, sodic plagioclase, biotite, and chlorite with minor amounts of 

epidote, hornblende, muscovite, magnetite, and allanite. Premo and Loucks (2000) reported a 

date of 1,770.8 ± 3.4 Ma for the Rambler granite. 

 

Sierra Madre Granite, 1,744-1,763 Ma (Xgs):  Well-foliated to medium-grained to faintly 

foliated and coarse-grained, pink to red granite and quartz monzonite plutons, dikes, and sills in 

the Sierra Madre (Houston and Graff, 1995). A facies of the Sierra Madre Granite was dated as 

1,744 ± 14 Ma, 1,749 ± 8 Ma, and 1763 ± 6 Ma, by Premo and Van Schmus (1989) using the 

uranium/lead zircon method. 

 

quartz veins of unknown age (Xq):  Mapped in the lower French Creek area by Matus (1958), 

and in the Mullen Creek complex by Sutherland and Hausel (2003). These quartz veins cut both 

the small felsic intrusives and rocks of the Mullen Creek complex. 

 

small felsic intrusives (Xgf):  Medium- to coarse-grained, pale red to pink to pinkish-white and 

gray granite and quartz monzonite that in places grades into granodiorite. These intrude the 

Mullen Creek mafic complex (McCallum and Orback, 1968). Similar granitic intrusives and 

some dioritic phases, mapped by Ramirez (1971), and Donnelly (1979) as younger felsic 

intrusives in the southwestern part of the Mullen Creek complex are included as are Ruehr’s 

(1961) granite gneiss, some of Houston and others (1978) older granite, and McCallum and 

Kluender’s (1983) granite. Some of these intrusives are associated with shear zones, but exhibit 

both concordant and discordant contact relationships, and are interpreted as both syn- to post- 

shear intrusions (McCallum and Orback, 1968; Ramirez, 1971). Contacts with the mafic 

complex are generally sharp where observed, and may be accompanied by intrusive breccias and 

mafic rock inclusions. Widespread contact effects are shown by prevalent hybridization adjacent 

to many of these bodies. Where hybridization is extensive, distinction between small felsic 

intrusives and the Horse Creek foliated granodiorite is difficult (Ramirez, 1971; Donnelly, 1979). 

 

Metamict zircons from a sample of a granitic felsic intrusive in the Horatio Rock quadrangle 

showed considerable uranium loss and resulted in reversely discordant 207Pb/206Pb ages 

between 1,710 and 1,600 Ma. Although no definitive date was acquired, the date range could be 

interpreted as an approximately 1,550 Ma (≤1,600 Ma) magmatic event where the zircons 

inherited older cores or as an older magmatic event (≥1,710 Ma) that recorded younger 

metamorphic alteration (Toner and others, 2019). 

 

granite dikes (Xgd): Pink, medium-grained, commonly sheared granite dikes and some sills of 

uncertain ages, both north and south of the Cheyenne Belt (Houston and others, 1968). 

 

aplite gneiss (Xap):  Pink to pinkish-gray aplite gneiss, commonly in the form of sills in the 

Lake Owen area and south of Sheep Mountain  in the Medicine Bow Mountains (Houston and 

Orback, 1976). 
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Lake Owen layered mafic complex, 1,775.1+/- 3.0 Ma:  The Lake Owen layered mafic 

complex is a Proterozoic gabbroic intrusion which hosts significant mineralization (Hausel, 

2000). Loucks and Glasscock (1989) noted 18 cyclic units within the Lake Owen complex that 

were defined by large scale repetitions of two or more lithologic units, and by compositional 

variations in the rock mineralogy. Of these, at least 12 stratigraphic horizons in the complex 

exhibit cumulus sulfide mineralization. Mapping in the Lake Owen area, based on Houston and 

others (1968), Houston and Orback (1976), and particularly Houston and others (2003) defines 

the following units within the Lake Owen complex. More detailed descriptions of individual 

units in the cyclical successions are referenced to Houston and others (2003). A date from 

pegmatitic gabbro-norite pods (sample 20170921NK-A) within the layered unit yielded a U-Pb 

zircon age of 1,775.1 +/- 3.0 Ma (Sutherland and Kragh, 2018). 

 magnetite gabbro (Xlm)  

 magnetite gabbro-norite (Xlr) 
 olivine gabbro (Xlo) [previously log] 

 olivine magnetite gabbro-norite (Xlu) 

 gabbro-norite (Xlg) 

 norite (Xln) 

 troctolite (Xlt) 
 layered unit (Xll) alternating light and dark layers of olivine gabbro, norite, and 

anorthosite, varying in thicknesses from a few centimeters to a few meters 1,775.1 +/-  3.0 Ma 

(Sutherland and Kragh, 2018). 

 cyclic succession (Xlc):  layers of olivine gabbro or norite alternating with layers of 

norite 

 border phase (Xlb):  dark-gray to black and porphyritic basalt, which is locally 

brecciated and filled with gabbro, and may exhibit effects of contact metamorphism at the base. 

 

Horse Creek foliated granodiorite, 1,777 ± 4 Ma (Xgh):  The Horse Creek foliated 

granodiorite is a widespread unit within the Keystone quadrangle. It includes parts of Houston 

and others (1978) older granite and quartzo-feldspathic gneiss, Currey’s (1965) quartz-feldspar 

gneiss, McCallum and Orback’s (1968) broadly inclusive mylonitic biotite-epidote-plagioclase 

gneiss, Ramirez’s (1971) Boat Creek granodiorite, Coalson’s (1971) granitic gneiss, Donnelly’s 

(1979) Horse Creek granodiorite, and McCallum and Kluender’s (1983) felsic mylonite gneiss.  

This unit has also been referred to by Houston and others (1989) and Dubendorfer (1986) as the 

Horse Creek granite, which, Premo and Van Schmus (1989) reported as exhibiting a U-Pb zircon 

age of 1,777 ± 4 Ma. Extreme variations within parts of this unit, probably result from 

gradational interactions with surrounding units and cataclasis. 

 

This unit varies from unfoliated to conspicuously foliated, with zones of moderate to severe 

cataclasis occurring primarily in the northern portions of the unit (McCallum and Orback 1968), 

and weak cataclasis noted by Ramirez (1971) in the western part of the unit. The rock unit is 

generally pink to gray in color, taking on a greenish cast where epidote is abundant. However, it 

becomes dark pinkish-gray to greenish-gray where it is more mafic west of the New Rambler 

mine. The rock is predominately fine to medium-grained, with lesser coarse-grained phases. 

Additional discussions of this unit can be found in Sutherland and Hausel (2003). 

 

Mullen Creek layered mafic complex, 1,777.6 ± 2.1 Ma (Xc):  This is a 60 mi2 complex of 

fine- to coarse-grained mafic igneous and metaigneous layered rocks south of the Cheyenne Belt 

in the central Medicine Bow Mountains. These rocks have been mapped in part by Ruehr (1961), 

Houston and others (1968), McCallum and Orback (1968), Ramirez (1971), Houston and others 

(1978), and Donnelly (1979).  Some researchers have suggested that the Mullen Creek complex 
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was a dismembered part of the Lake Owen layered mafic complex, which lies six miles to the 

east. 

 

Loucks and others (1988) describe the Mullen Creek complex as lower crustal mafic cumulates 

derived from arc tholeiite magma from a Proterozoic intra-oceanic arc complex accreted to the 

Archean Wyoming Craton. The complex is tilted on edge, and has more than 21 cyclic units 

based on petrographic analyses, which resembles the stratigraphy of the Lake Owen complex 

(Loucks and Glasscock, 1989). Loucks and others (1988) calculated a U-Pb zircon age of 1,777.6 

± 2.1 Ma from a diorite within the complex.  

 

The irregular shaped body of the Mullen Creek complex is metamorphosed to varying degrees 

and includes metabasalt, metagabbro, gabbro, olivine gabbro, metadiorite, diorite, quartz diorite, 

metadiabase, amphibolite, amphibolized metaigneous rocks, metapyroxenite, and hybrid rocks 

resulting from contamination or modification of the mafic rocks by felsic intrusions. Gradations 

from one rock type to another are common within the complex, and sparse outcrops coupled with 

deep weathering inhibit mapping contacts between them (Ramirez, 1971; Donnelly, 1979). 

 

The Mullen Creek mafic complex is truncated on the northwest by the Mullen Creek-Nash Fork 

shear zone and along its northeastern edge by the Rambler shear zone. The complex cuts 

amphibole gneiss along its southeastern boundary, but is extensively metamorphosed along its 

southern edge where it appears to grade into the amphibole gneiss (Houston and others, 1989). 

 

The following designations found within the Mullen Creek mafic complex are generally not 

mapped as separate units due to gradational relationships, poor outcrops, and insufficient data.  

 

amphibolite (Xca):  Fine-grained, massive to poorly foliated, dark-gray to black 

amphibolite, orthoamphibolite, and amphibolitized metaigneous rocks made up of 

hornblende, andesine, and accessory biotite, magnetite and clinopyroxene with secondary 

quartz and epidote. The amphibolite may contain local zones of chlorite schist, and 

gradational contacts are noted between orthoamphibolite and metagabbro in some areas 

(Ruehr, 1961). 

 

gabbro (Xcg):  Fine- to coarse-grained, massive to weakly foliated, dark greenish-gray to 

brown-black gabbro composed of amphibole and andesine-labradorite, and may include 

olivine gabbro, metaleucogabbro, norite and anorthosite. The gabbro exhibits 1mm to 1m 

alternating light and dark bands of metaleucogabbro and metagabbro that range from 

anorthosite to metapyroxenite, respectively in the vicinity of Jay’s Roost (Ruehr, 1961; 

Donnelly, 1979). 

 

olivine gabbro (Xco):  Olivine gabbro, composed of plagioclase, clinopyroxene, olivine, 

orthopyroxene, and amphibole, with minor amounts of quartz, biotite, and opaque 

minerals, represents one of the least metamorphosed rock types within the Mullen Creek 

complex (Houston and others, 1968). 

 

 

Elkhorn Mountain Gabbro (Xe):  Large bodies, dikes, and sills of medium-grained, dark-

brown to black clinopyroxene-hornblende gabbro in the southern Sierra Madre. This gabbro also 

occurs as inclusions in the Sierra Madre Granite (Houston and Graff, 1995). 
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olivine gabbro (Xeo):  Olivine-two pyroxene-amphibole-gabbro coronite in a one by two 

mile pluton within the Gabbro of Elkhorn Mountain near the Colorado border (Snyder, 

1980). This pluton is cut by rare dikes of Gabbro of Elkhorn Mountain.  

 

peridotite (Xep):  Small black to olive-gray, red-weathering, amphibole peridotite bodies 

of various types including dunite, wehrlite, harzburgite, and hornblendite, many 

containing spinel and chromite, within or related to the Gabbro of Elkhorn Mountain near 

the Colorado border (Snyder, 1980). 

 

metavolcanic and metasedimentary rocks, 1,778.4 ± 1.7 Ma (Xv) [previously Xvm]:  This 

designation after Houston and others (1992) encompasses a wide variety of metavolcanic and 

metasedimentary rocks, and includes mylonitic quartz-feldspar gneiss within the Cheyenne Belt 

(Houston and Karlstrom, 1992). The mylonitic quartz-feldspar gneiss varies from fine- to 

medium-grained, sharply-defined alternating layers of white to gray quartz-microcline and dark-

gray biotite-plagioclase-epidote gneiss, to medium- to coarse-grained, strongly foliated to 

massive, biotite-quartz-feldspar gneiss, to pink to leucocratic, fine- to medium-grained quartz-

feldspar gneiss resembling a weakly metamorphosed alkalai feldspar granite. Evidence of 

mylonitization is present throughout the mylonitic quartz-feldspar gneiss, but interpretation by 

Duebendorfer(1986) proposes that widespread recrystallization has destroyed much of the 

mylonitized fabric (Houston and Karlstrom, 1992). Rhyolite from this unit, in the northern part 

of the Foxpark quadrangle, is dated at 1,778.4 ± 1.7 Ma (Carnes and others, in press) 

 

Some outcrops of amphibole gneiss in the Medicine Bow Mountains (Xvg) on Saratoga 100k 

were mapped as (Xd) in the northern part of the Horatio Rock quadrangle and dated at 1,775 ± 

1.8 Ma (Toner & others, 2019). These may be a part of the Lake Owen complex or the Mullen 

Creek complex. 

 

Detailed rock identifiers and descriptions where available for other metavolcanic and 

metasedimentary rocks south of the Cheyenne Belt are describes as follows: 

 

felsic gneiss (Xvf): This includes various descriptions, compositions, and designations in the 

Medicine Bow Mountains, and siliceous quartz-feldspar gneiss of possible volcanic origin in the 

southern Sierra Madre near the confluence of Hog Park Creek and Encampment River (King, 

1961; Houston and others, 1968; Houston and Karlstrom, 1992; Houston and Graff, 1995). 

 

mylonitic biotite augen gneiss in the Medicine Bow Mountains (Xva):  Dark-gray to black, 

medium-grained, variably mylonitized, moderately to strongly foliated, hornblende-bearing 

biotite augen gneiss. Locally, this unit is migmatitic and contains 10-50 percent masses of 

pegmatite and coarse-grained granitic gneiss that are both concordant and discordant (Houston 

and Karlstrom, 1992). 

 

migmatitic biotite schist and gneiss in the Medicine Bow Mountains (Xvb):  This unit 

encompasses coarse-grained, migmatitic sillimanite-garnet-biotite schist and gneiss and weakly 

foliated biotite augen gneiss as mapped by Houston and Karlstrom (1992). Houston and 

Karlstrom (1992) interpret this unit as pelitic schist engulfed or intruded by granitic and 

granodioritic components that comprise 30-70 percent of the unit. 

 

mafic schist and gneiss in the Medicine Bow Mountains (Xvs):  This is a succession of  

volcanogenic rocks dominated by moderately to strongly foliated, dark-gray to purple, fine- to 

medium-grained hornblende-biotite-plagioclase schist and gneiss interlayered with marble, 



16 

calcite-garnet-diopside-epidote schist, and diopside-hornblende-chlorite-calcite gneiss. This unit 

also contains conformable amphibolite and felsic gneiss (Houston and Karlstrom, 1992). 

 

quartz-plagioclase gneiss in the Medicine Bow Mountains (Xvq):  Fine- to medium-grained, 

pink to gray gneiss with plagioclase, quartz, epidote, and biotite. This unit as described by 

Houston and Karlstrom (1992) is diverse in its composition, and is locally mylonitic. 

 

amphibole gneiss in the Medicine Bow Mountains (Xvg):  This complex unit south of the 

Cheyenne Belt is predominately fine-grained, but varies from medium- to coarse-grained in 

some areas. It ranges from brown to dark-gray on fresh exposures to light greenish-gray on 

weathered surfaces. The strongly foliated gneiss is characterized by dominant dark bands of 

amphibole that alternate with bands of felsic and intermediate gneiss ranging in thickness from a 

fraction of an inch to several feet. It also includes some interlayered biotite gneiss, sillimanite 

gneiss, quartzo-feldspathic gneiss, diopside-hornblende-calcite gneiss, impure marble, calcite-

garnet-epidote gneiss, amphibolite, and calc-biotite gneiss. Descriptions and mapping are after 

Houston and others (1968), Houston and others (1978), Ruehr (1961), Currey (1965) and 

Donnelly (1979).  

 

Houston and others (1978) suggested a possible sedimentary origin for part of the amphibole 

gneiss, but admit that the origin of much of the unit is uncertain. Contact between the 

amphibolite gneiss and the Mullen Creek layered mafic complex is gradational in the Devils 

Gate area, although contacts between the amphibole gneiss and metagabbro are generally sharp 

(Ruehr, 1961). Houston and others (1978) noted that the amphibole gneiss is cut by the mafic 

complex along the east side of the Mullen Creek complex, but the contact between the south side 

of the mafic complex and the amphibole gneiss is gradational, and the contact between the 

amphibole gneiss and quartz-biotite schist (Xqb) to the east of the Mullen Creek complex is also 

gradational.  

 

Origin of thin hornblende gneiss and amphibolite interlayered with felsic gneiss (Xvf) in the 

southwestern Medicine Bow Mountains near the Platte River is uncertain (Myers, 1958). These 

complex layers are in part diagrammatically depicted on the 1:100,000 scale map. 

 

pelitic schist in the Medicine Bow Mountains (Xvp):  This unit is composed of weakly 

foliated, medium- to coarse-grained, dark-gray to black biotite-quartz-feldspar schist and gneiss 

with lesser amounts of fine-grained quartz-biotite schist and gneiss (Houston and Karlstrom, 

1992). 

 

marble in the Medicine Bow Mountains (Xvm):  A small exposure of marble associated with 

amphibole gneiss is mapped in the northern part of Sheep Mountain. Other impure marbles have 

not been mapped, but occur on Centennial Ridge within the mafic schist and gneiss (Xvs), and 

interlayered with the amphibole gneiss (Xvg) in the vicinity of Smith North Creek, southeast of 

the Mullen Creek complex (Houston and others, 1968). 

 

quartz-andesine gneiss in the Medicine Bow Mountains (Xqa):  This unit consists of fine-

grained, highly foliated, light-gray gneiss composed principally of andesine, quartz, and biotite 

that grades imperceptibly into quartz diorite (Xk) at the southwestern edge of the Lake Owen 

mafic complex (Currey, (1965). 

 

quartz-biotite schist in the Medicine Bow Mountains (Xqb):  Quartz-biotite schist crops out 

in the Keystone area where it is 2400 ft thick. The schist is generally very fine-grained and 
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exhibits an angular and blocky appearance in outcrops with rectangular jointing. In places, fresh 

partings along foliation exhibit a micaceous sheen. The schist is medium to dark gray to black on 

fresh surfaces, but appears brown where weathered.  The schist appears to be in gradational 

contact with amphibole gneiss (Xvg) to its south and west, and with the Horse Creek foliated 

granodiorite (Xgh) to the north. The principal minerals in order of abundance are: quartz, 

plagioclase, biotite, and muscovite (Currey, 1965). 

 

Swetnam (1961) described another quartz-biotite schist in the Pelton Creek area near the state 

line. That rock appears medium-grained and black and white banded, and contains quartz, 

biotite, potash feldspar, and muscovite, with foliation developed by biotite layering. 

 

quartz-biotite-andesine gneiss in the Medicine Bow Mountains (Xqc):  This unit, located in 

the Woods Landing area, is a fine- to medium-grained, moderate- to well-foliated, dark-gray 

gneiss with well-developed layering (Houston and others, 1968). Quartz is the most abundant 

mineral, and the rock resembles quartzite in some exposures. The unit includes quartz-

plagioclase-biotite gneiss and quartz-hornblende gneiss mapped by King (1961).  Primary 

constituents are quartz, biotite, andesine, hornblende, microcline, and muscovite. Alternating 

mafic and felsic layers 1/8 to 1/4 inch thick vary from sharp to gradational in much of the unit, 

and contain accessory apatite, sphene, and epidote, and magnetite (King, 1961). 

 

Encampment River Granodiorite, 1,779 ± 5 Ma (Xz):  Foliated, dark-gray intrusive rock 

varying in composition from granodiorite to quartz diorite to diorite, and characterized by 

inclusions of volcanic rocks of the Green Mountain Formation (Houston and Graff, 1995). 

Premo and Van Schmus (1989) determined a 1,779 ± 5 Ma uranium/lead zircon age for the 

intrusion. 

 

Keystone quartz-diorite, 1,784.7 ± 1.9 Ma (Xk):  The Keystone quartz diorite is a medium to 

light gray, medium-grained, quartz diorite in the Medicine Bow Mountains found east, south, 

and west of the Lake Owen mafic complex (Houston and others, 1968), and described by Currey 

(1965). The rock crops out as prominent massive, rounded to spheroidal blocks bounded by 

widely spaced joints, and faint foliation may be visible in some exposures. Principle constituent 

minerals in order of abundance are: plagioclase (andesine), quartz, hornblende, biotite, and 

epidote. Premo and Van Schmus (1989) provide a U-Pb zircon age for the Keystone quartz 

diorite of 1,781 ± 7 Ma. Campbell and Shelton (in press) provide a U-Pb zircon age for the 

Keystone Quartz Diorite of 1,784.7 ± 1.9 Ma from the Woods Landing quadrangle. 

 

Currey (1965) observed contacts between the quartz diorite and adjacent pre-existing 

metamorphic rocks to be gradational through a narrow transition zone (Xkel) where grain size 

decreases in the quartz-diorite as the contact is approached. The quartz diorite partially replaces 

older rocks, or is injected into the folia of older rocks within the transitional contact zone. 

Numerous inclusions of these older rocks suggested to Currey that a stoping process contributed 

to emplacement of the quartz diorite. Houston and others (1978) report that the quartz diorite is 

younger than adjacent quartz-biotite schist (Xqb) and amphibole gneiss (Xvg). Houston and 

others (in press) describe interlayering with felsic gneiss in the Lake Owen area. 

 

Keystone quartz-diorite interlayered with adjacent rock types (Xki):  Transition zone 

described above (Xk) varies from a few inches to greater than 600 feet wide Sutherland and 

Hausel (2003), and Houston and others (2003). 
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Keystone quartz-diorite agmatite (Xka):  Brecciated layered gneiss, veined by quartz diorite 

that constitutes a majority of the unit southeast of the Lake Owen mafic complex (Houston and 

Orback, 1976). 

 

Green Mountain Formation – Sierra Madre 

 

Mafic metavolcanic rocks of the Green Mountain Formation (Xrv):  A sequence of 

mafic metavolcanic rocks of upper greenschist to lower amphibolite facies, with locally 

well-preserved primary texture in the central Sierra Madre. Calc-alkaline metabasaltic 

rocks dominate the sequence in the Green Mountain and Fletcher Park areas, but grade 

laterally into and are interbedded with intermediate to felsic composition metavolcanic 

rocks and metagraywacke (Houston and Graff, 1995). 

 

Felsic metavolcanic rocks of the Green Mountain Formation, 1,792 ± 15 Ma (Xrf):  

Felsic metavolcanic rocks in the Green Mountain area that are predominately fine-

grained, white to gray to black metarhyolite and metadacite (Houston and Graff, 1995). A 

uranium/lead zircon age of 1,792 ± 15 Ma was reported by Premo and Van Schmus 

(1989) on zircon separated from metadacite porphyry from this unit on the east side of 

Green Mountain. 

 

Metagraywacke of the Green Mountain Formation (Xrm):  Dark-gray biotite-

chlorite-quartz-feldspar schist in the northern Sierra Madre (Houston and Graff, 1995).   

 

Mixed metavolcanic and metasedimentary rocks of the Green Mountain Formation 

(Xrx):  A succession of interbedded felsic and mafic metavolcanic and metasedimentary 

rocks in the Sierra Madre (Houston and Graff, 1995). 

 

Chemical metasedimentary rocks of the Green Mountain Formation (Xrc):  Fine-

grained metaquartzite (chert?), metalimestone, oxide-facies magnetite-rich iron 

formation, and massive and disseminated sulfide deposits that are interlayered with or 

disseminated in volcanogenic metasedimentary rocks, and includes some sedimentary 

exhalative sulfide deposits (Houston and Graff, 1995). 

 

mafic intrusive rocks ~1,800 Ma (Xs) – Dark-gray to black mafic, generally sill-like and 

conformable intrusives up to a mile long, and varying from a few feet to several hundred feet 

wide. Cross-cutting intrusive relationships occur locally. Complete conversion to amphibolite 

dominates these rocks, and where interlayered with amphibolitized mafic volcanic rocks, 

distinction between these intrusives and flows and tuffs is difficult. Therefore, some mafic 

bodies may be included within the Green Mountain Formation (Xrv) and mafic metavolcanic 

rocks (Xvc) (Houston and Graff, 1995). Where original textures are preserved or where chemical 

composition and mineralogy are known, these mafic intrusives are designated as follows: 

 amphibolite (Xsa)  

 diabase (Xsd)  

 gabbro and metagabbro (Xsg)  

 metabasalt (Xsb)  

 olivine gabbro (Xso)  

 metaperidotite (Xsp)  

 metapyroxenite (Xsx)  

 ultramafic (Xsu)  
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South Holroyd gneiss (Xvh):  This gneiss in the extreme southeastern Sierra Madre is locally 

distinguished by silver dollar-sized pods consisting of quartz, and muscovite, and sillimanite. 

However, this unit is dominated by layers of hornblende gneiss, quartz-pebble conglomerate, 

gray quartzite, and sillimanite-quartz-garnet-feldspar gneiss (Houston and Graff, 1995). 

 

Mafic metavolcanic rocks (Xvc):  Predominantly brown to purple amphibolite and hornblende 

gneiss with minor layers of biotite-quartz-feldspar gneiss in the Sierra Madre. Some fine-grained 

amphibolite with fragmental texture is interpreted to derive from lapilli tuff, and medium- to 

coarse-grained, massive amphibolite is interpreted to have been emplaced as intrusive rock 

(Houston and Graff, 1995). 

 

Metasedimentary rocks, Sierra Madre (Xvd):  White metalimestone, white to gray quartzite, 

brown oxide facies iron formation, and green to gray mica schist in the eastern Sierra Madre in 

the Cheyenne Belt (Houston and Graff, 1995). 

 

Mixed gneiss (Xvx):  Interlayered biotite-quartz-feldspar gneiss, hornblende-quartz-feldspar 

gneiss, hornblende-garnet-quartz-feldspar gneiss, amphibolite, augen gneiss, marble, diopside-

calcite-garnet gneiss, quartzite, and other calc-silicate rocks in the Sierra Madre (Houston and 

Graff, 1995). 

 

 

Paleoproterozoic and Neoarchean Rocks north of the Cheyenne belt 

 

Gaps Intrusion, in the central Medicine Bow Mountains 1,900-2,150 Ma (Xgi):  This 

intrusive is a medium-grained, granitoid-textured, plagioclase-rich, leucocratic, pink to gray 

felsic igneous rock associated with gabbroic intrusives emplaced in the lower Libby Creek 

Group. Most exposures may be foliated or brecciated and show evidence of shearing. The Gaps 

Intrusion is radioactive where sheared, and some sulfide-bearing quartz veins that cut this rock 

unit contain as much as 1,000 ppm uranium and 1,655 ppm thorium (Houston and Karlstrom, 

1992). 

 

mafic intrusive rocks ~1,700-2,300 Ma (Xn):  Dark-gray to black to purple mafic dikes and 

sills metamorphosed to varying degrees, but with many preserved gabbroic and diabasic textures. 

In the Sierra Madre, these are mostly altered to amphibolite (Matus, 1958; Houston and Graff, 

1995). In the Medicine Bow Mountains, smaller dikes and sills are predominantly basalt and 

diabase, and larger intrusions tend to be quartz gabbro and norite. Houston and Karlstrom (1992) 

interpret many of these mafic intrusions to be emplaced in faults. Age range cited is from 

Houston and others (1992), although Houston and Graff (1995) suggest a probable range of ages 

from 1990 to 2092 Ma in the Sierra Madre. The Houston and Graff (1995) range is based on a 

uranium/lead zircon age of 2,090 ± 9 Ma by Premo and Van Schmus (1989) of a pegmatitic 

phase of a metagabbro that intrudes the Cascade Quartzite, and a Sm/Nd whole rock date of 

1,990 ± 30 Ma by Shaw and others (1986) of an ultramafic sill intruded into Vulcan Mountain 

Metavolcanics west of Spring Lake. More detailed rock identifiers and descriptions where 

available are as follows: 

 amphibolite (Xna) 

anorthositic (Xnr) 

diabasic (Xnd) 

gabbroic (Xng) Premo and Van Schmus (1989) described an 2,092  9 Ma U-Pb zircon 

date from a gabbroic intrusion cutting the Cascade Quartzite. 

olivine gabbro (Xno) 



20 

ultramafic (Xnu) 
 

Baggot Rocks Granite ~ 2,429 ± 4 Ma (Xbr): Pink granite ranging from massive to well-

foliated and strongly sheared (Houston and others, 1992). Radiometric date after Premo and Van 

Schmus (1989). 

 

granite and quartz monzonite (Xbg): Mapped in the Bennett Peak area near the North Platte 

River by Houston and others (1968) and assumed to be similar to the Baggot Rocks Granite. 

 

granite dikes (Xge):  Mapped near Elk Hollow Creek, north of Highway 130 on the west side of 

the Medicine Bow Mountains by Houston and others (1968), and suggested be contemporaneous 

with the Baggot Rocks Granite. 

 

 

Paleoproterozoic 

 

Snowy Pass Group, Sierra Madre, north of the Cheyenne belt 

 

Slaughterhouse Formation (Xsh):  This is a severely deformed and only partially preserved 

remnant of an estimated 4,000+ ft succession consisting of fine-grained, interbedded, red, 

yellow, and green metalimestone containing layers of buff metadolomite, quartzite, and dark-

green phyllite. Fine-grained, chlorite-calcareous schist is underlain by dark-gray graphitic 

phyllite, which is underlain by metalimestone (Houston and Graff, 1995). 

 

Copperton Formation (Xcp):  The Copperton Formation, which has been structurally thinned 

by thrust faults, is made up of three units: an upper 500 ft thick, white massive quartzite; a 

middle laminated phyllite exhibiting an upper section of alternating beds of coarser-grained 

schist and cross-bedded quartzite, underlain by 1,000 ft of gray, thin alternating quartz and fine-

grained mica-rich laminae; and a coarse-grained, highly sheared, kyanite-bearing, white basal 

quartzite as much as 2,000 ft thick (Houston and Graff, 1995). 

 

Bottle Creek Formation (Xb):  The 1300 ft thick Bottle Creek Formation is best expressed in 

the western Sierra Madre where an upper slabby and buff quartzite containing interbeds of 

phyllite is successively underlain by units of diamictite and quartzite. The diamictite units are 

paraconglomerate within a matrix of tan or green phyllite interbedded with pale-green schistose 

and feldspathic, medium- to coarse-grained quartzite (Houston and Graff, 1995). 

 

Cascade Quartzite, >2,092  9 Ma (Xcq):  The 5000+ ft thick Cascade Quartzite is a locally 

cross-bedded, predominately white arkosic quartzite containing layers of quartz-pebble 

conglomerate and black chert-pebble conglomerate (Houston and Graff, 1995). Premo and Van 

Schmus (1989) described an 2,092  9 Ma U-Pb zircon date from a gabbroic intrusion cutting the 

Cascade Quartzite. 

 

Singer Peak Formation (Xsi):  A discontinuous upper part of this unit consisting of poorly 

sorted paraconglomerate with angular granite clasts, green phyllite beds, and thin quartzite is 

restricted to the western part of the Sierra Madre. The lower part, about 2,800 ft thick to the west, 

and thinning out east of Silver Lake, consists of blue and green phyllite, buff to orange quartzite, 

and thick silvery phyllite that hosts red garnet at the base (Houston and Graff, 1995).  

 



21 

Magnolia Formation, 2,451  9 Ma (Xmg):  In the Sierra Madre, the Magnolia Formation is 

primarily coarse-grained white to gray quartzite marked by small-scale trough cross-beds and 

thin layers of phyllite, with lenticular beds of radioactive quartz-pebble conglomerate near the 

base (Houston and Graff, 1995). The Magnolia Formation tapers from a thickness of 1,500 ft 

south of Dexter Peak to almost nothing south of Encampment. Zircons dated by Premo and Van 

Schmus (1989) give a depositional age of 2,451  9 Ma. 

 

 

Snow Pass Supergroup, Medicine Bow Mountains 

 

metasedimentary rocks (Xms): Mostly white to dark blue layers of quartzite, mylonitic 

quartzite, and some marble, slate, and phyllite within the northern part of the Cheyenne Belt 

(Houston and Karlstrom, 1992; Houston and others, 1992). Where individual quartz grains can 

be recognized, they are flattened and stretched. Houston and Karlstrom suspect the mylonitic 

quartzite is derived from the Medicine Peak Quartzite, but intense deformation negates an 

interpretation of origin for most of the quartzite.  

 

 

Libby Creek Group – Upper part 

 

French Slate (Xf):  2,000 ft of gray to black slate and phyllite containing beds of 

hematitic quartzite make up the French Slate. Alternating layers rich in muscovite, 

chlorite, and opaque minerals with layers rich in quartz define laminae probably represent 

original bedding. This rock unit of probable marine origin is truncated at its top by a 

major fault (Houston and Karlstrom, 1992). 

 

Towner Greenstone (Xt):  This unit consists of 1,600 ft of massive to schistose, green to 

purple amphibolite of basaltic composition with local thin beds of quartzite and very fine-

grained quartzite or metachert. The Towner Greenstone is considered to be of marine 

origin (Houston and Karlstrom, 1992). 

 

Nash Fork Formation (Xnf):  The Nash Fork Formation is 6,500 ft of tan siliceous 

metadolomite accompanied by thick intercalated lenses of black phyllite, and less 

common thin interlayered beds of quartzite, chert, flat-pebble conglomerate, and iron 

formation. Stromatolitic bioherms characterize the metadolomite and suggest shallow-

water marine deposition. The black phyllite is locally graphitic, and in some locations is 

pyrite- and graphite-rich (Houston and Karlstrom, 1992). 

 

 

Libby Creek Group – Lower part 

 

Sugarloaf Quartzite (Xsq):  The 1,900 ft  thick Sugarloaf Quartzite is made up of 

medium-grained, cross-bedded white quartzite, and is less feldspathic than the underlying 

formations of the lower Libby Creek Group (Houston and Karlstrom, 1992). 

 

Lookout Schist (Xls):  This unit consists of as much as 1,186 ft of layered schist with 

alternating mica- and quartz-rich layers along with abundant phyllite and arkosic, 

subarkosic, and micaceous quartzite. Primary depositional structures are locally 

preserved and include graded bedding in the basal part of the formation, which is 

magnetite-rich in exposures east of Lookout Lake (Houston and Karlstrom, 1992). 



22 

 

Medicine Peak Quartzite (Xmp):  The Medicine Peak Quartzite consists of 4,350-6,000 

ft of intermittently cross-bedded, white to bluish-gray, medium- to coarse-grained 

massive quartzite containing distinctive quartz-pebble conglomerate beds up to 6 ft thick. 

Discontinuous, emerald-green fuchsitic layers up to 58 ft thick occur near the top of the 

formation. A coarse- to very coarse-grained, cross-bedded quartzite that appears bluish-

gray due to the presence of kyanite makes up the lower 200 feet of the formation 

(Houston and Karlstrom, 1992). 

 

Heart Formation (Xh):  The 2,200 ft thick Heart formation consists of a tan, medium-

grained, upper arkosic quartzite exhibiting few primary structures, and a middle layered 

phyllite consisting of feldspar, chlorite, biotite, quartz, and muscovite. The middle layer 

is continuous in the northeastern part of the Medicine Bows, but becomes discontinuous 

to the southwest. The lower quartzite is similar to the upper, except that it exhibits 

abundant primary structures including ripples, cross-bedding, and ball and pillow 

structures, and it becomes more massive and finer-grained to the northeast (Houston and 

Karlstrom, 1992). 

 

Headquarters Formation (Xhd):  The upper part of this unit is a layered chlorite-

biotite-quartz phyllite containing alternating quartz-rich and mica-rich layers, and 

exhibits climbing ripples near its contact with the overlying Heart Formation. The lower 

part of the formation consists of interlayered paraconglomerate, quartzite, and schist. The 

lowermost paraconglomerate contains subrounded to subangular clasts of granite, 

quartzite, and schist in a massive or faintly stratified matrix of sand and silt-sized 

fragments of quartz, potash feldspar, plagioclase, and mica. The 2,100 ft thick 

Headquarters Formation has dropstones within the paraconglomerate that are interpreted 

as glaciomarine (Houston and Karlstrom, 1992). 

 

Rock Knoll Formation (Xrk):  Approximately 1,250 feet of medium-grained gray 

arkose containing phyllitic partings up to 1 ft thick and paraconglomerate layers up to 3 

feet thick. Paraconglomerate clasts consist of quartz, quartzite, and granite. Feldspars 

within the Rock Knoll are primarily plagioclase, as they are throughout the lower part of 

the Libby Creek Group and in the underlying Vagner Formation (Houston and Karlstrom, 

1992). 

 

 

Deep Lake Group undivided (Xdl):  Undivided components of the Deep Lake Group described 

below as mapped in the Kennaday Peak area by Houston and others (1968). 

 

Vagner Formation (Xvr):  This unit exhibits complexly folded phyllitic quartzite 

underlain by marble composed of intricately folded layers rich in calcite and quartz, 

which in turn is underlain by paraconglomerate with angular to subrounded variably sized 

clasts of granite, quartzite, and schist. The phyllite is layered with alternating quartz-rich 

and mica-rich layers suggestive of varves. The unit is variable in thickness up to a 

maximum of 2,600 feet. The Vagner is interpreted to be of glaciomarine origin because 

of dropstones, poor sorting, subangular clasts in the paraconglomerate, fine laminations 

in the phyllite, and lateral persistence of the marble (Houston and Karlstrom, 1992). 

 

Cascade Quartzite, >2,092  9 Ma (Xcq):  This is a white, well-sorted, pebbly quartzite 

and subarkose with 5-10 cm thick layers of interbedded quartz and black chert-pebble 
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conglomerate. The unit, which commonly exhibits planar and trough cross-bedding and 

an interpreted southwest directed paleocurrent flow, is as much as 2,800 ft thick, but is 

locally thinned by erosion of the upper beds (Houston and Karlstrom, 1992). Premo and 

Van Schmus (1989) described an 2,092  9 Ma U-Pb zircon date from a gabbroic 

intrusion cutting the Cascade Quartzite. 

 

Campbell Lake Formation and Lindsey Quartzite (Xcl):  The upper part of the 

Campbell Lake Formation is black to gray, locally cross-bedded quartz-rich phyllite. The 

lower part is a paraconglomerate with 1 inch to 30 inches diameter rounded to subangular 

clasts of white granite, phyllite, and quartzite, supported within a matrix that makes up 80 

percent of the rock, and is composed of quartz, plagioclase, mica, and rock fragments. 

Because it is discontinuous, the Campbell Lake Formation, which varies in thickness 

from 0 to 205 ft as described by Houston and Karlstrom (1992) is combined with the 

Lindsey Quartzite. 

 

The 1,350 ft thick Lindsey Quartzite, underlying the Campbell Lake Formation, is made 

up of medium-grained white to gray quartzite and subarkose with thin phyllite layers and 

partings. It exhibits well-preserved cross-bedding, and is interpreted as fluvial deposition 

in a braided stream with more distal sources than the underlying Magnolia Formation 

(Houston and Karlstrom, 1992). 

 

Magnolia Formation 2,451 9 Ma (Xmg):  In the Medicine Bow Mountains, the 

Magnolia Formation averages 1,200 ft thick, and consists primarily of coarse-grained 

arkosic quartzite with abundant trough cross-beds and local thin quartz-pebble 

conglomerates that form upward-fining sets. Discontinuous basal conglomerates are 

radioactive (up to 1,620 ppm uranium) and grade upward into coarse-grained micaceous 

quartzite (Houston and Karlstrom, 1992). 

 

 

Neoarchean Rocks north of the Cheyenne belt 

 

Phantom Lake Metamorphic Suite, Sierra Madre 
All three subunits of the Phantom Lake metamorphic suite in the Sierra Madre have subjected to 

multiphase deformation that has obscured stratigraphic relationships. Its separation into three 

units has allowed for easy correlation between the Sierra Madre and Medicine Bow Mountains. 

However, petrological, geochemical, and isotopic evidence presented by Souders and Frost 

(2006) indicates that the Jack Creek quartzite and Bridger Peak quartzite may actually be the 

same geologic unit, and that the Phantom Lake metamorphic suite was deposited in an intra-

ocean arc basin between 2.71 and 2.68 Ga. 

 

Bridger Peak Quartzite (Wbp):  2,600 feet of gray to white quartzite varying from 

quartz arenite to argillaceous and arkosic quartzite with well-developed lenticular beds of 

quartz-pebble conglomerate at the base in the Vulcan Mountain area, and common 

interlayered sericite schist in the upper part toward its eastern outcrops (Houston and 

Graff, 1995). 

 

Silver Lake Metavolcanics 2,680 ± 18 Ma (Wsm):  The most abundant rocks in this 

complex metavolcanic sequence include gray quartz-plagioclase-mica schist, fine-grained 

amphibolite, dark amphibole gneiss, pelitic schist, white feldspathic quartzite, calcareous 

quartzite, and paraconglomerate. Some fragmental textures can be observed, graded 
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bedding is preserved locally, and abrupt facies changes are common. A lack of marker 

horizons, poor preservation, and ambiguous top and bottom criteria lead to stratigraphic 

confusion within the Silver Lake metavolcanics (Souders and Frost, 2006). Granite-

boulder paraconglomerate interbedded with feldspathic quartzite and pelitic schist 

throughout the unit is note worthy. Thickness varies dramatically from 3,300 ft in the 

central Sierra Madre to 1,000 ft in the eastern Sierra Madre (Houston and Graff, 1995). 

U-Pb zircon geochronology by Souders and Frost (2006) from a porphyritic metadacite in 

the Silver Lake metavolcanic suite give an estimated crystallization age of 2,680 ± 18 

Ma. Chamberlain (personal commun. 2009) suggested that zircon grain morphology may 

indicate a sedimentary origin rather than volcanic for the dated material. 

 

Jack Creek Quartzite (Wjc):  Dominated by white quartzite, and containing lenses of 

paraconglomerate, quartz-pebble conglomerate, gray and green phyllite, metagraywacke, 

and marble. This unit is 1,650 ft thick in the northwestern Sierra Madre, including the 

328 ft thick Deep Gulch Conglomerate Member at the base, which consists of well-

developed pyritic and radioactive quartz-pebble conglomerate. The unit is finer grained in 

the north-central Sierra Madre where conglomerate layers are missing, and thins to a 

‘feather edge’ about five miles west of Encampment (Houston and Graff, 1995). Souders 

(2004) states that the Jack Creek Quartzite and the Bridger peak Quartzite are 

indistinguishable in the field, and suggests that they may actually be the same geologic 

unit as opposed to the interfingering, time-transgressive sequence as described by Graff 

(1978). 

 

Phantom Lake Metamorphic Suite, Medicine Bow Mountains 
 

Conical Peak Quartzite (Wcp):  This unit, commonly exhibiting both large-scale planar 

and trough cross-beds, consists of fine-grained white micaceous subarkose containing 

beds of calcareous quartzite and metabasalt. The Conical Peak Quartzite conformably 

overlies the Colberg Metavolcanics, and reaches a maximum exposed thickness of about 

2,625 feet (Houston and Karlstrom, 1992). 

 

Colberg Metavolcanics (Wcm):  Heterogeneous assemblage of amygdaloidal basalt, 

pillow basalt, tuff, lapilli tuff, paraconglomerate, and quartzite rich in amphibole and 

biotite that is interpreted to be metagraywacke. The most abundant volcanic rocks are 

tholeiitic metabasalt, and the metatuffs vary in composition from rhyolite to basalt. The 

paraconglomerates contain granite, quartzite, and volcanic clasts in a coarse-grained 

matrix of amphibole, biotite, and quartz. The rounded granite boulders are up to 19 

inches in diameter, and the thickness of the paraconglomerate is as much as 1,312 feet. 

Thickness of the Colberg Metavolcanics ranges from a thin trace in the Northwest 

Medicine Bow Mountains to 8,200 feet in the north-central part of the mountains 

(Houston and Karlstrom, 1992). 

 

Bow Quartzite (Wbq):  This unit, exhibiting medium- to large-scale planar cross-beds 

and some oscillation ripple marks, is 95 % white to pink muscovitic quartzite, feldspathic 

quartzite, and arkose, but locally contains layers of conglomerate, biotite and hornblende 

schist, and siliceous metalimestone. The Bow Quartzite varies in thickness from 656 to 

1,900 feet (Houston and Karlstrom, 1992; Houston and others, 1992). 

 

Quartzo-feldspathic gneiss (Wgn):  Well foliated to massive and faintly foliated, pink to gray 

felsic gneiss primarily composed of plagioclase, potash feldspar, and quartz. The gneiss in the 
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Medicine Bow Mountains is commonly interlayered with biotite-rich and biotite-poor gneiss, and 

uncommonly with augen gneiss, hornblende gneiss, amphibolite, quartzite, paraconglomerate, 

and marble (Houston and Karlstrom, 1992). In the Sierra Madre, the interlayered felsic gneiss 

includes pink granite gneiss, gray biotite-quartz-feldspar gneiss, tan garnet-quartz-feldspar 

gneiss, white quartz-microcline gneiss, and local layers of kyanite gneiss, hornblende gneiss, and 

amphibolite (Houston and Graff, 1995). Based on the intrusion of this unit by 2.71 Ga 

granodiorite and granite, dated by Premo (1982), Houston and Graff (1995) assign an early 

Archean age for the gneiss. Souders and Frost (2006) state that it is unlikely that this basement 

gneiss could predate the 2.71 Ga Spring Lake granodiorite by >100 million years based on Nd 

isotopic studies. 

 

Biotite gneiss (Wbg):  Dark-gray, well-foliated biotite gneiss, interlayered with 

hornblende gneiss,  was mapped in the area north of Baggot Rocks by Houston (1978) 

with a radiometric date of 2,410 ± 50 Ma (Hills, Gast, Houston, and Swainbank, 1968). 

This gneiss was assigned a Late Archean age by Houston and others (1992) and 

regionally included as a subdivision within the quartzo-feldspathic gneiss (Wgn) [see 

Houston and others, 1968]. 

 

Red-pink orthogneiss, 2,683 ± 6 Ma (Wog):  Well-foliated to massive, red to pink granitic to 

tonalitic orthogneiss in the northern and east-central Sierra Madre. More massive phases of this 

unit intrude the Spring Lake Granodiorite (Houston and Graff, 1995). In the Medicine Bow 

Mountains, this unit is predominantly pink foliated granite, but includes granodiorite, quartz 

monzodiorite, and trondhjemite (Houston and Karlstrom, 1992). Structure is typically concordant 

with country rock in the Medicine Bows, but in various locations, the unit can exhibit either 

gradational or cross-cutting relationships with the quartzofeldspathic gneiss (Wgn). Radiometric 

date of 2,683 ± 6 Ma is after Premo and Van Schmus (1989). 

 

Spring Lake Granodiorite, 2710 10 Ma (Wsl):  Well-foliated gray granodiorite dated using 

U-Pb zircon techniques by Premo and Van Schmus (1989). This unit outcrops extensively in the 

northern Sierra Madre (Houston and Graff, 1995), and intrudes both the Vulcan Mountain 

metavolcanics and the lower part of the Phantom Lake Metamorphic Suite (Houston and others, 

1992). 

 

Kyanite pegmatite (Wkp): This granite pegmatite contains blades of blue and white kyanite, 

and intrudes or grades into kyanite-biotite-quartz-plagioclase gneiss of the quartzo-feldspathic 

gneiss (Wgn) (Ferris, 1964; Houston and Graff, 1995). 

 

Vulcan Mountain Metavolcanics (Wvm):  The Vulcan Mountain Metavolcanics is an 

estimated 1,148 feet of highly deformed mafic metavolcanic succession in the Sierra Madre that 

is primarily made up of fine-grained amphibolite and hornblende-plagioclase gneiss, with 

isolated interlayers of chlorite schist, quartzite, paraconglomerate, and marble. Pillow structures 

and amygdules are locally preserved in the amphibolite, which also hosts conformable 

interlayered intrusions of ultramafic and gabbroic composition. Although the contact is obscured, 

the Vulcan Mountain metavolcanics are interpreted to lie unconformably on top of the basement 

quartzofeldspathic gneiss and correlate with the Overland Creek Gneiss in the Medicine Bow 

Mountains (Houston and others, 1992); Houston and Graff, 1995).  
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