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INTRODUCTION
Coalbed natural gas (CBNG) production has been recorded 
in Wyoming’s Powder River Basin (PRB) since 1980 when 
the Wyoming Oil and Gas Conservation Commission 
(WOGCC) first began keeping records. Production grew 
slowly into the 1990s but by 1997, the PRB was producing 
more than one mmcf of CBNG per month (WOGCC, 
2016). Annual CBNG production in the PRB peaked 
in 2009 at more than 556 bcf, or 2.1 percent of all U.S. 
natural production for that year. CBNG production rates 
started a decline in late 2010 that has continued into the 
present; annual production fell to 197 bcf during 2015, a 
decline of nearly 65 percent.

CBNG is produced by reducing the water pressure within 
a targeted coal seam. This typically requires the extraction 
of large amounts of groundwater from the seam, effectively 
lowering the water level. As water pressure decreases, micro-
scopic films of natural gas that adhere to the surfaces of 
pores and fractures cleats in the coal desorb and coalesce 
into bubbles. Both water and free natural gas are pumped 
to the surface where they are separated. The CBNG, gen-
erally measured in volumes of thousand cubic feet (mcf), 

is transported to market through a series of compressor 
stations and pipelines. Produced water, measured in units 
of barrels (bbls), is used for irrigation or livestock, rein-
jected into deeper geologic formations, or discharged into 
evaporation/infiltration pits and streambeds. Between 
2001 and 2014, the PRB in Wyoming produced nearly 
5.6 trillion cubic feet of CBNG and more than 7.4 billion 
barrels (nearly 954,000 AF) of groundwater (EIA, 2016; 
WOGCC, 2016; fig. 1).

A typical production profile for a CBNG well is shown in 
figure 2. During the dewatering stage, in some instances 
water levels in coal seam aquifers may decline several 
hundred feet. In most cases, a period of stable gas and water 
production follows for several years. In time, as gas produc-
tion declines below the rate at which the methane can be 
profitably produced, the volumes of water pumped from 
the well may be reduced to very low rates, or pumping may 
cease altogether and the well may be shut in or plugged and 
abandoned. As groundwater pumping declines or ceases, 
water levels in the targeted coal seam aquifer(s) may rise, 
or recover, in response. These fluctuations in groundwater 
level (GWL) are not restricted to just the developed coal 

Figure 1.  Monthly volumes of CBNG (red, in bcf ) and produced water (blue, in mmbbls) produced in the PRB in          
Wyoming from 1980-2016 (WOGCC, 2016).
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seam aquifers but extend, in some cases, to adjacent sand-
stone aquifers as well (Taboga and Stafford, 2014; Stafford 
and Wittke, 2013).

More than 36,000 CBNG wells have been drilled in the 
PRB. During peak development in 2008, more than 
24,000 wells were producing (WOGCC, 2016). Over time, 
about 11,000 CBNG wells have been permitted for other 

uses, mostly as livestock wells (SEO, 2016; WDEQ, 2016). 
In comparison, nearly 14,000 permitted non-CBNG 
groundwater wells designated for domestic, municipal, 
agricultural, and/or livestock uses are completed in PRB 
aquifers (table 1); most of these water rights were granted 
prior to CBNG development. The impact that production 
has had on pre-development water levels in the sandstone 
aquifers that overlie the gas-rich coal zones is a concern 

Figure 2.  CBNG (in red) and water production (in blue) curves from the Hartzog Federal 32-31-4575BG well (API#-49-
005-55783) located in the central PRB in Wyoming (WOGCC, 2016).
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Use 1-49 50-99 100-499 500-999 ≥1,000 NR Totals

Domestic 723 485 2,720 465 75 81 4,549

Municipal 0 0 7 3 7 11 28

Irrigation 5 2 6 0 9 4 26

Livestock 867 481 4,304 843 222 243 6,960

Multi-use 248 167 1,369 367 96 149 2,396

Totals 1,843 1,135 8,406 1,678 409 488 13,959

Table 1.  Permitted non-CBNG groundwater rights grouped by depth of 
completion in the PRB (SEO, 2016). NR = no record.
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to many of the holders of these water rights (Bredehoeft, 
2004; BLM, 2004).

Since the early 1990s, the BLM Field Office in Buffalo, 
Wyoming, has operated a network of groundwater moni-
toring well sites in the Wyoming portion of the PRB. This 
monitoring network, which currently includes 65 sites, 
collects groundwater level data from the Wyodak Rider 
(Big George), Upper Wyodak, Lower Wyodak, Cook, and 
Wall coal zones and sandstone aquifers. Under contract to 
the BLM, the Wyoming State Geological Survey (WSGS) 
reported groundwater level changes at the monitoring sites 
(Taboga and Stafford, 2014; Stafford and Wittke, 2013; 
McLaughlin and others, 2012; Clarey and others, 2010; 
Clarey, 2009). WSGS previously examined groundwater 
level recovery in the Upper Wyodak coal zone (Taboga 
and others, 2014).

This report examines GWL changes in the sandstone aqui-
fers of the Wasatch and Fort Union Formations associated 
with coal seams that were developed for CBNG extraction. 
GWL changes in 58 sandstone wells located at 40 monitor-
ing sites (fig. 3, table 2) are evaluated with respect to water 
production from CBNG development within 1 ½-mile 
radius buffer zones centered on each monitoring well site. 
Monitoring in the wells examined in this study began as 
early as 1992 and has continued into the present. 

Special focus is placed on aquifer responses to recent 
declines in water production. Coal seam water produc-
tion data were obtained from the WOGCC website, http://
wogcc.state.wy.us/. 

POWDER RIVER STRUCTURAL BASIN, 
WYOMING

Geologic Setting
The Powder River Structural Basin (PRB) is an elongate 
Laramide foreland basin that measures nearly 120 miles 
east to west by 200 miles north to south. In Wyoming, 
the basin is bound by the Black Hills, Hartville Uplift, 
Laramie Range, Casper Arch, and Bighorn Mountains. 
The Pryor Uplift, Porcupine Dome, and Miles City Arch 
flank the northern third of the basin in Montana (Thamke 
and others, 2014). The structural basin is asymmetric; it 
dips gently westward (~1.5°) from its eastern margin for 
about 90 miles to the basin’s axis where it reaches its great-
est depths (~18,000 ft below the surface). The axis is located 
within 10 miles of its western edge and generally parallels 
the ridge of the Bighorn Mountains.

Earliest formation of the structural basin likely occurred 
in the middle Paleocene when rapid subsidence (Curry, 
1971) created Lake Lebo that was in-filled through fluvial, 

deltaic, paludal (marshy), and lacustrine sedimentation. 
During the middle through late Paleocene, the lake was 
filled by sediments deposited by fluvial-deltaic systems 
around the margins, forming the Tongue River Member 
of the Fort Union Formation (Ayers, Jr., 1986). Nearby 
orogenic uplifts constricted the basin and provided sedi-
ment sources for the coal-bearing formations in the upper 
part of the Tongue River Member. Eocene fluvial Wasatch 
Formation sediments occupy the center of the PRB axis, 
while the Paleocene lacustrine and f luvial-deltaic Fort 
Union Formation sediments crop out around the basin 
margins (Tyler and others, 1995). 

The type of the depositional environment responsible for 
the formation of the PRB’s extensive coal beds has been 
controversial. Interpreted depositional environments 
include northeastward-flowing fluvial systems of braided, 
meandering, and anastomosed streams in the basin center 
and alluvial fans at the basin margin (Flores and Ethridge, 
1985), or bounded by backswamp and flood plain facies 
(Flores, 1986). Peat accumulated in low-lying swamps and 
raised mires, in fluvial flood plains, abandoned channels, 
and interchannel environments (Flores and others, 1999). 

In contrast, Jones (2010) proposed a late Paleocene (60 
million—55 million years ago [mya]) drainage system that 
included rivers and flowing channels but was dominated 
by an extensive palustrine (marshy) environment similar 
to the Pantanal wetlands in present-day Brazil, Bolivia, 
and Paraguay. During palustrine episodes, the low energy 
southwest to northeast flow gradient did not support effec-
tive clastic transport, and organic sediments formed as 
decaying vegetation collected below the water table under 
anoxic conditions. During wetter conditions, lacustrine 
environments prevailed as higher energy flows carried clas-
tics from neighboring uplifts into the basin. Organic mate-
rial decayed rapidly in the oxygenated waters, and clastic 
sediments formed.

Hydrostratigraphy
The Lower Tertiary Wasatch and Fort Union Formations, 
and Upper Cretaceous Lance Formation and Fox Hills 
Sandstone are the dominant stratigraphic units in the 
PRB (table 3). These units cover more than 93 percent of 
the bedrock surface area in the Wyoming portion of the 
PRB and reach a maximum combined thickness of more 
than 8,600 ft along the axis of the PRB just south of Crazy 
Woman Creek (Denson and others, 1995). 

Sedimentary units underlying the Fox Hills consist of 
earlier Mesozoic- and Paleozoic-aged marine shales, sand-
stones, and carbonates total 6,800 to 10,000 ft thick. 
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Table 2.  List of BLM groundwater monitoring site locations examined in this study.

  County       Well site 
        name

Location Coal seam 
intervals

Completed 
sandstone 
intervals

Approximate 
elevation  

(ft)

Start  
dateQtr/Qtr Section Township Range

Campbell 20 Mile Butte SE SE 32 52 N 74 W Anderson 1 4,557 Jan-04

21 Mile NE NE 22 48 N 74 W BG 1 5,037 Aug-01

All Night Creek NW SW 36 43 N 74 W BG 4 5,220 Mar-01

Bar 76 NE SE   1 45 N 73 W Wyodak 1 4,768 Sept-97

Barrett Persson SW SW 32 47 N 73 W Wyodak 1 4,945 Dec-00

Beaver Fed SE NW 23 47 N 75 W BG 1 4,783 Apr-03

Blackbird Coleman SW SE   5 47 N 74 W Wyodak 1 4,778 Jul-00

Bowers SE SW 36 42 N 72 W Wyodak 4 5,018 Jan-98

Cedar Draw NE SW   2 51 N 75 W Wall 1 4,268 Jan-04

Dilts SE NW 31 43 N 71 W Wyodak 1 4,929 Mar-99

Durham Ranch Section 6 SW NE   6 45 N 71 W Wyodak 1 4,697 Nov-97

Durham Ranch Section 14 SE NE 14 44 N 72 W Wyodak 1 4,861 Jan-98

Fourmile (4-Mile) NW NE 11 43 N 75 W BG 2 5,358 Nov-07

Hoe Creek SW SW   7 47 N 72 W Wyodak 1 4,734 Jan-98

Kennedy SE SE 33 52 N 73 W Anderson 1 4,489 May-00

Lone Tree SW SE 13 50 N 73 W Wall 1 4,760 Feb-00

MP 2 NW NW   2 47 N 72 W Wyodak 1 4,554 May-93

MP 22 SE NE 22 48 N 72 W Wyodak 3 4,561 Feb-93

Napier SE SE 24 48 N 76 W BG 1 4,803 May-01

North Gillette SW NE 34 51 N 73 W Anderson 1 4,380 Sept-01

Palo SE NE 22 56 N 74 W Canyon 1 4,141 Feb-01

Redstone SENW 26 53N 73W Canyon 1 4,155 Oct-98

Section 25 SW SW 25 46 N 72 W Wyodak 1 4,659 Nov-96

Stuart Section 31 NE SE 31 44 N 71 W Wyodak 2 4,933 Aug-97

Throne NW NW 26 47 N 74 W Wyodak 1 5,029 May-01

West Pine Tree SE SE 20 42 N 76 W BG 1 5,181 Sept-07

Williams Cedar Draw NE SW 15 53 N 75 W Smith, 
Anderson 2 4,130 Apr-07

Wormwood NE NW 14 46 N 76 W BG 2 4,574 Dec-06

Johnson Bear Draw SW NW   1 50 N 79 W BG 1 4,624 Mar-06

Big Cat SE SE 24 48 N 79 W BG 1 4,480 Jul-03

Buffalo SE (1) NW NW 12 50 N 81 W Smith 4 4,542 Aug-01

Bull Creek NW SE 12 52 N 77 W Anderson 2 3,909 Nov-05

Bullwhacker NW SE 16 42 N 77 W BG 1 5,050 Apr-02

Juniper SW SW 14 49 N 78 W BG 2 4,428 Mar-01

Rose Draw NE SE 19 52 N 77 W Wall 2 3,914 May-09

Sasquatch NE SW 12 48 N 77 W BG 1 4,472 Jan-98

Streeter SE NW 22 43 N 78 W BG 1 4,761 Aug-04

Wild Turkey NE SW 29 49 N 76 W BG 1 4,344 Nov-04

Sheridan L Quarter Circle Hills NE SE 14 56 N 77 W Cook 1 3,618 Apr-05

Lower Prairie Dog SE NE 10 57 N 83 W Anderson 2 3,715 Aug-00

(1) The shallow sand monitoring well has flowed intermittently during this period of record (POR) and was not considered in this study.
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Figure 3.  Location of BLM sandstone monitoring well sites in the PRB in Wyoming.

$$$$

$$$

$$$$$

$$

$$

$$

$$

$$

$

$$$$$

$$$$$

$$$

$$

$$

$$

$$

$$

$$$

$$

$$

$$$

$$$

$$

$$$$
$$

$$$

$$

$$$

$$

$$

$$$

$$

$$

$$

$$$

$$

$$

$$

$$$$$$

$$$

Blackbird BG

P O W D E R

R I V E R

B A S I N

Palo

MP 2
MP 22

Dilts

Throne

Sec 25

Napier

Bowers

Bar 76

21 Mile

Kennedy

Juniper

Big Cat

Wormwood

Streeter

Redstone

Fourmile

Sasquatch

Rose Draw

Bull Creek

Lone Tree

Hoe Creek

20 Mile
Butte

Cedar
Draw

Bear Draw
Buffalo SE

Beaver Fed

Wild Turkey

Bullwhacker

Stuart Sec 31

West
Pine
Tree

North Gillette

Barrett Persson

All
Night
Creek

Lower Prairie Dog

Durham Ranch Sec 6

Williams
Cedar Draw

Durham Ranch Sec 14

Lower Quarter
Circle Hills

USGS The National Map: National Boundaries Dataset, National Elevation
Dataset, Geographic Names Information System, National Hydrography
Dataset, National Land Cover Database, National Structures Dataset, and
National Transportation Dataset; U.S. Census Bureau - TIGER/Line; HERE
Road Data

Powder 
   River 

      Basin

²

0 25 5012.5
Miles

W Y O M I N G



6

Denson and others (1994, 1995) determined the thickness 
of units in the PRB that overly the Pierre Shale.

The Wasatch and Fort Union Formations form the Lower 
Tertiary aquifer system, which is the most widely utilized 
source of groundwater in the PRB. Wells completed in 
the Upper Cretaceous Lance Formation and Fox Hills 
Sandstone aquifer system supply groundwater along the 
basin’s margin. Both systems are capable of providing suf-
ficient amounts of high-quality groundwater adequate to 
meet the needs of domestic, municipal, agricultural, and 
livestock users.

Knowledge of the lithostratigraphic complexity in the 
Fort Union and Wasatch Formations advanced signifi-
cantly during CBNG development when borehole data 
from thousands of wells became available. Combining the 
CBNG data with geophysical logs from oil and natural gas 
wells and coal boreholes, Flores and others (2010) plotted 
vertical and lateral lithostratigraphic variations along 
17 cross sections spanning the PRB. Coal seams in the 
Wasatch and Fort Union Formations are generally con-
tinuous, but split and merge frequently as they dip west-
ward until they split into multiple thin veins and pinch-out 
in the western PRB. The occurrence, distribution, shape, 
and spatial extents of sandstone bodies vary widely. In the 
northern PRB, they appear to be relatively discontinuous 

and lenticular, whereas south of Gillette, they are more 
continuous, extending for 10 or more miles. 

CBNG Water Production in the PRB 
Produced water management quickly became a pivotal 
environmental issue during CBNG development in the 
PRB. During the early years of development, much of the 
water was legally discharged under National Pollution 
Discharge Elimination System (NPDES) permits to the 
nearest surface drainage. As the Wyoming Department 
of Environmental Quality (WDEQ) refined the NPDES 
permitting process, produced water discharges were regu-
lated largely by watershed through the Watershed-based 
WYPDES Permitting Program (WDEQ, 2016). In addi-
tion, the WOGCC tracked CBNG and water produc-
tion by drainage; see NRCS (2016) for an overview of the 
Watershed Boundary Dataset and Hydrologic Unit Code 
(HUC) System. 

Significant CBNG development began in eastern PRB 
drainages, primarily in the Upper Belle Fourche subbasin, 
and progressed westward (fig. 4). Water production rates in 
eastern subbasins (Upper Belle Fourche, Little Powder, and 
Upper Cheyenne Rivers) were highest during 2000–2003, 
comprising 55–85 percent of all CBNG-produced water 
in the PRB. As development moved westward, water pro-
duction increased in the Upper and Middle Powder Rivers 

Table 3.  Dominant hydrostratigraphic units, their lithologic types, and thicknesses in the PRB in Wyoming. a Thamke and 
others (2014); b Love and Christiansen (1985); c Hallberg and Case (1999a, b), Reheis (2007), Reheis and Williams (2007), 
Reheis and Coates (2007); d Flores and Bader (1999), Flores and others (2010); e Denson and others (1994, 1995).
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and the Upper Tongue River drainages through the early 
part of the decade, reaching peak levels in 2008. Water 
production from Wyodak coals in the Upper Belle Fourche 
and Big George coals in the Upper Powder River subbasin, 
respectively, account for the peak produced water volumes 
observed in 2002 and in 2006–2008. During 2015, CBNG 
water production dropped to 24,600 AF/year; 80 percent 
(19,697 AF) was produced in the Upper Powder River Basin 
drainage. In comparison, only 662 AF (2.7 percent) of the 
total was pumped from the once productive Upper Belle 
Fourche River, Little Powder River, and Upper Cheyenne 
River drainages of the eastern PRB. 

Water production varied widely among subbasins within 
the PRB (fig. 5, upper plot). Water production rates nor-
malized to subbasin surface area (fig. 5, lower plot) show 
that large volumes of produced water per square mile were 
extracted from the Upper Belle Fourche, Upper Powder, 
Middle Powder, and Upper Tongue Rivers subbasins. The 
low production rates in the Crazy Woman Creek and Clear 
Creek drainages resulted from WDEQ and SEO produc-
tion restrictions that were imposed following a WSGS 
report outlining poor water-gas ratios in those drainages 
(Surdham and others, 2007). 

Hydrogeology of the Lower Tertiary Aquifer System
The Fort Union and Wasatch Formations that comprise 
the Lower Tertiary aquifer system of the interior PRB 
provide groundwater for domestic, municipal, agricultural, 
and livestock wells. In eastern portions of the basin, some 
of these wells have been completed in coal seam aquifers 
where groundwater quality meets state and federal water 
standards. As CBNG development progressed into the 
PRB, produced water from CBNG wells was used increas-
ingly to provide water to livestock throughout the basin. 
About 10,000 groundwater rights in the PRB list “CBM/
Livestock” as the well use (SEO, 2016). 

The PRB is a semi-arid basin; average annual rainfall 
ranges from 10–26 inches (PRISM, 2016). Estimated 
recharge from direct precipitation is about 0.2 in/year 
(Long and others, 2014). Regional groundwater flow in 
the PRB is to the north or northeast (Thamke and others, 
2014). U.S. Geological Survey (USGS) data obtained from 
numerous wells shows wide ranges in hydraulic parameters 
and total dissolved solids (TDS, table 4).

Thorough descriptions of the hydrogeology of the PRB 
can be found in recent studies by the USGS (Thamke and 

Figure 4.  Cumulative area plot illustrating the temporal and geographic progression of annual water production in the PRB 
drainage subbasins (HUC 8s; WOGCC, 2016).
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others, 2014; Long and others, 2014). Both studies can be 
downloaded from the USGS Publications website.

Factors that Affect Water Level Responses to    
Pumping and Recovery
Numerous factors influence the manner in which GWLs 
in a well respond to pumping and subsequent recovery. 
Aquifers are complex environments where physical, spatial, 
and hydraulic characteristics are highly variable (aniso-
tropic). Hydraulic properties are specific to the well site 
being tested and, in some cases, can only be estimated from 
measurements obtained during pump and recovery tests 
(Fetter, 2001). Factors that can affect drawdown and recov-
ery include:

•	 Design and completion of the production wells: 
number of wells and locations

•	 Stratigraphic variations

•	 Production history: pumping rates, volumes, and 
duration 

•	 Groundwater production from contiguous areas

•	 Type of aquifer(s) in which well is completed

•	 Local and regional groundwater flows

•	 Type, amount, and timing of recharge 

•	 Hydraulic communication with adjacent       
hydrogeologic units 

•	 Flow boundaries 

•	 Geologic structure  

•	 Presence of surface water bodies

•	 Variations in permeability and porosity including 
the presence of fractures

Figure 5.  Bulk CBNG water production (in red) in AF and CBNG water production by unit area (in blue) in AF/square 
mile for principal drainages in the PRB in Wyoming (WOGCC, 2016).
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When a production well is pumped at a constant rate, 
the pressure head will be depressed around the pump-
ing well. An idealized plot of drawdown and recovery 
as a function of time (Theis, 1935) for an observation 
well located 1,000 ft from a typical CBNG production 
well is shown in figure 6 (Taboga and others, 2014). 
The general shape of the idealized curves is readily 
apparent in several of the monitoring well hydrographs 
shown in the appendix of this report. Others show 
near linear recovery phases or, in some cases, con-
tinued GWL declines even though water production 
was stopped years earlier. The unpredictable nature of 
groundwater response at these monitoring sites is due 
to the fact that producing CBNG well fields operate 
within highly variable environments. Wide variations 
in aquifer hydraulic properties, stratigraphy, geologic 
structure, and groundwater recharge and discharge 
occur in the PRB over local and regional scales. 
The operation of a CBNG field is also complex. Water pro-
duction rates at well fields are not constant but vary widely 
over time in response to market and operational conditions. 
The depression of the potentiometric surface in a CBNG 
well field is rarely a smooth radial cone but is, instead, a 
highly irregular surface that is the result of many irregu-
larly spaced wells pumping at highly fluctuating rates over 
various periods of time. In short, the water level changes 
observed at the monitoring wells in this report occurred 
within complex and constantly fluctuating environments. 

Methods
This study looks at groundwater level responses in selected 
BLM monitoring wells completed in sandstone intervals 
with the objectives of:

•	 Assessing maximum water level changes observed 
during CBM development in the PRB in relation 
to geographic location, proximity to developed 
coal seams, and depth of the completed interval

•	 Evaluating aquifer water level responses to 
decreased water production 

WSGS obtained and reviewed manual and automated 
water level time series from the BLM for 58 sandstone 
monitoring wells. The complete dataset is available from 
the Wyoming Geographic Information Science Center’s 
Wyoming GeoLibrary at http://wygl.wygisc.org /wygeo-
lib/catalog/main/home.page. Selection criteria included 
a relatively complete record of more or less quarterly 
manual GWL measurements from inception of monitor-
ing through 2015, the continuous presence of groundwa-
ter in the wellbore of sandstone monitoring wells, and an 
intact WOGCC water production history for CBNG wells 
within a 1 ½-mile radius during the monitoring period of 
record (POR). 

After reviewing the available groundwater level data, 
WSGS decided to use only manual depth to groundwa-
ter (DGW) level measurements in this study. The use of 
pressure transducers and data loggers to monitor DGWs 
requires periodic inspection and calibration to ensure the 
acquisition of accurate data (Bear Draw Unit, MP2, and 
MP22). Even then, transducer malfunctions can result in 
spurious readings (Throne and Durham Ranch Section 6) 
and lost data. In some cases, automated monitoring was 
suspended while manual measurements continued (West 
Pine Tree and Palo). Lastly, automated monitoring equip-
ment is usually calibrated to concurrent manual measure-
ments. 

Table 4.  Summary hydraulic and water quality data for Lower Tertiary and Upper Cretaceous aquifer systems in the PRB in 
Wyoming (adapted from Hallberg in Taboga and others, in press).

Aquifer

Well yield Specific capacity Transmissivity TDS

Count Range (median) 
[gal/min] Count Range (median) 

[(gal/min)/ft] Count Range 
[ft2/day] Range [mg/L]

Lower Tertiary aquifer system

Wasatch aquifer 548 0.1–1,470 (7) 290 0.004–350 (0.19) 6 5.4–295 1,105–3,376

Fort Union aquifer 592 0.25–1,500 (10) 230 0.003–2,200 
(0.39) 90 1.3–1,330 225–167,200

Coal seam aquifers ------ 97–4,589

Upper Cretaceous aquifer system

Lance aquifer 194 0.75–300 (10) 54 0.01–1.8 (0.24) 15 13.5–281 1,102–47,910

Fox Hills aquifer 46 2–5,000 (10) 23 0.03–4.9 (0.25) 3 214–324 325–6,758
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WOGCC provided monthly water production rates for 
CBNG wells in the PRB. WSGS correlated water pro-
duction volumes to specific coal zones, where possible. 
Water production from wells completed in several coal 
zones was assigned to “multiple” zone production. WSGS 
created an “unmonitored” classification for wells where 
the production zone was ambiguous or identified in the 
WOGCC database by formation (e.g. Fort Union) and 
not by coal seam.

WSGS previously generated maps of CBNG produc-
tion zones (Stafford and Wittke, 2013; McLaughlin and 
others, 2012) within a 1 ½-mile radius of the BLM mon-
itoring wells using ArcGIS® Geographical Information 
System (GIS) software by ESRI®. Once CBNG wells were 
identified within each zone, monthly water production 
data through 2015 were downloaded from the WOGCC 
website, http://wogcc.state.wy.us/, and monthly aggre-
gated water production rates were calculated for each zone. 
Monitoring sites were determined to be in “producing” 
zones if CBNG well water production exceeded 1,000 
bbls/month later than June 2015; monitoring well sites 
that did not meet this criteria were considered to be sited 
in “nonproducing” zones.

All data were downloaded, reviewed, and evaluated in 
Microsoft Excel®. Maximum water level changes were 
determined from manual DGW measurements for each 
sandstone monitoring well. Maximum changes in DGW 
were compared to the well’s depth of completion and the 
vertical distance of the monitored sandstone from the 
nearest monitored coal seam. Rates of change (recovery 
or decline) in DGW were evaluated during calendar years 
2013–2015 for well sites located in producing zones. DGW 
recovery or decline rates were calculated from the month 
that water production ceased for well sites in nonproduc-
ing zones.

RESULTS
WSGS evaluated water level data collected by the BLM 
at 58 sandstone wells and 41 associated coal seam wells 
located on 40 selected monitoring well sites (fig. 3). Several 
of the sites monitor multiple sandstone and coal strata 
through the use of nested wells, wellbore packers, or a 
combination of the two. Detailed information regarding 
well completion zones and depths, CBNG gas and water 
production rates, interburden thicknesses, and area CBNG 
wells can be found in Taboga and Stafford (2014). Well 
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Figure 6.  Idealized drawdown (blue) and recovery (red) curves for an observation well sited 1,000 ft from a single CBNG 
production well (Taboga and others, 2014).
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hydrographs (figs. A1-1 through A1-40) and tabular data 
(tables A1-1 through A1-3) for all well sites are included in 
the appendix of this report.

Monitoring the selected wells began as early as 1993 (MP2 
and MP22) and as recently as 2009 (Rose Draw). Water 
level monitoring has continued at most wells into 2016, 
but was discontinued earlier in some wells at monitoring 
sites with multiple wells (All Night Creek, Beaver Creek, 
Bowers, and Buffalo SE). Manual DGW measurements 
were made more or less on three-month intervals in most 
wells but less frequently in others (Palo, Dilts, and West 
Pine Tree). Manual measurements were not made in cases 
where the field technician’s safety was compromised by 
dangerous weather or high wellbore gas pressures, where 
access to the well was restricted by the landowner, or when 
obstructions in the wellbore prevented measurement.

Initial measurements obtained prior to the onset of water 
production within the associated 1 ½-mile radius buffer 
zone (Bear Draw, Big Cat, Hoe Creek, Juniper, Rose 
Draw, Sasquatch, Stuart Federal, and Wild Turkey) show 
relatively stable coal seam groundwater levels compara-
ble in depth to water levels in associated sandstones. Coal 
seams at some well sites (Bar 76, Napier, Section 25, and 
Streeter) exhibit moderate water level declines prior to the 
onset of water production within the buffer zone likely 
due to CBNG development outside the buffer zone. Pre-
development water levels are unavailable at well sites where 
monitoring began after water production had started 
(Palo, Throne Ranch, and Williams Cedar Draw). At the 
Blackbird Coleman site, groundwater levels in the Wyodak 
coal seam rose briefly following the onset of CBNG devel-
opment.

Table A1-1 summarizes changes in GWL and water pro-
duction data for various times and periods of record at all 
40 monitoring well sites. The table lists initial GWLs, 
maximum changes from initial levels, and final changes 
from initial levels observed during 2015. Volumes and dates 
of maximum water production are also shown for corre-
sponding coal seams.

Maximum Groundwater Level Changes
Maximum groundwater level changes in sandstone wells 
over their respective PORs ranged from a 36-ft water level 
rise at West Pine Tree to a 538-ft decline at Cedar Draw 
(table A1-1). The average change for all sandstone wells is 
-82 ft (decline) with a median of -11.5 ft. The large differ-
ence between the average and median is driven by large 
drawdowns of 200 ft or more in 12 sandstone wells. When 
these high drawdown wells are removed, average (-14 ft) 
and median (-9 ft) water level changes compare more favor-

ably. In comparison, maximum groundwater level changes 
in coal seam monitoring wells range from 16 to 1,446 ft 
of decline. For all coal seam monitoring wells, the average 
decline is 432 ft, and the median decline is 316 ft.

Maximum groundwater level changes vary widely across 
the Powder River Basin, apparently independent of mon-
itoring site location (fig. 7). GWL responses may differ 
markedly by depth at well sites monitoring multiple sand-
stones (Juniper, MP22, Rose Draw, Stuart Sec 31, and 
Wormwood), although these variations do not exhibit con-
sistent trends with increasing depth. For example, water 
level declines in the four sandstone wells at the Bowers site 
vary only slightly (from -12 to -30 ft) even though their 
depths of completion range from 73 to 558 ft. In contrast, 
maximum water level variations at the All Night Creek 
and Buffalo SE sites consist of both declines and rises with 
increasing depth (fig. 7).

WSGS examined the relationship between the maximum 
observed groundwater level change and the vertical sepa-
ration between the monitored sandstone unit and nearest 
monitored coal seam (fig. 8). The largest variations (-538 
to 11 ft) occur in sandstones separated from the nearest 
monitored coal seam by less than 200 vertical ft. All of 
the high decline (>~200 ft) wells fall within this minimum 
separation interval. Using many of the same wells as this 
study, Ross and Zoback (2008) attributed this relation-
ship to vertical hydraulic communication between some 
narrowly separated sandstone and coal seam wells. GWL 
rises in three sandstone wells (All Night Creek #4, Buffalo 
SE #4, and Redstone), and moderate declines (<100 ft) in 
13 other wells within this thin separation interval likely 
point to wide variations in the occurrence of interbedding 
between sandstones and shales in the Wasatch and Fort 
Union Formations. GWL changes in wells separated from 
a monitored coal seam by more than 200 ft range from 
-42 to 36 ft.

Maximum GWL changes varied by depth of the sand-
stone unit as well. The largest changes (-538 to 11 ft) are 
seen in wells completed at depths greater than ~600 ft 
below ground surface (bgs), including all wells with GWL 
declines of 200 ft or more (fig. 9). Thus non-CBNG wells 
completed at depths of 600 ft or more (about 20 percent of 
all non-CBNG wells; table 1) are at greatest risk of being 
significantly impacted. The greater impact to deep wells 
was predicted early by hydrogeologists and federal agencies 
during the CBNG development period (Bredehoeft, 2004; 
BLM, 2004). In shallower wells (mid-depths of completion 
less than ~600 ft bgs), GWL changes range from -84 to 
36 ft. 
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Figure 7.  Maximum groundwater level changes observed at 40 BLM sandstone monitoring sites. Negative numbers represent 
GWL declines; positive numbers indicate rises in GWL. A stacked column indicates multiple sandstone wells are operating at 
the site (in order of depth, shallowest sandstone interval at top of column, and deepest interval at bottom). Black bar in each 
column indicates relative stratigraphic position of monitored coal seam(s).

The two factors, narrow separation interval and deep well 
completion, shown by the scatter plot analysis are predic-
tive of impact to sandstone GWLs. Twelve of 18 wells that 
meet both criteria had GWL declines of 200 ft or greater. 
The remaining six wells (All Night Creek #4, Fourmile #2, 
Buffalo SE #4, Bull Creek #1, Durham Ranch 14 #1, and 
Rose Draw #2) showed GWL declines of less than 100 ft. 

Rates of Groundwater Level Change
Annual rates of groundwater level change (fig. 10) are listed 
separately for producing (table A1-2) and nonproducing 
(table A1-3) sites. Rates of change were calculated during 

calendar years 2013–2015 for well sites located in produc-
ing zones and from the month that water production ceased 
for well sites in nonproducing zones. The largest variation 
in annual rate of change is observed in wells separated from 
a monitored coal seam by less than 200 ft. As expected, the 
highest rates of annual GWL decline occur in wells sited 
in producing zones (Bear Draw, Napier, and Wormwood). 
Some wells in nonproducing zones exhibit less than 10 ft/
year (20 Mile Butte, Bull Creek, and Rose Draw). 

The magnitude and shape of GWL responses observed at 
well sites in nonproducing zones provide a general predic-
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Figure 9.  Scatter plot of change in GWL with time versus center of the depth of completed interval (ft) in sandstone moni-
toring wells. Negative numbers represent GWL declines; a positive number indicates rise in GWL.

Figure 8.  Scatter plot of change in GWL with time versus vertical separation (ft) between sandstone and coal. Negative num-
bers represent GWL declines; a positive number indicates rise in GWL. Dashed line represents 200 ft separation distance.
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Figure 10.  Scatter plot of annual rates of change in GWL (in ft) for monitored sandstone wells sited in producing (red) and 
nonproducing (blue) zones. Negative numbers represent GWL declines; a positive number indicates a rise in GWL.

tion of expected water level recovery in the PRB as CBNG 
production continues to decline. Mean rate of GWL recov-
ery in all nonproducing zones is 1.2 ft/year. The highest 
rate of recovery (averaging 46 ft/year from 2013-2015) 
occurs at the Cedar Draw monitoring site. GWLs in the 
sandstone monitoring well there closely follow those in the 
coal seam (fig. A-8), suggesting a high degree of hydraulic 
communication. However, the rate of recovery at Cedar 
Draw is not linear but has slowed with time (fig. 7); recov-
ery rates have dropped from 68 ft/year during 2013 to 25 
ft/year in 2015. The sandstone well at Throne Ranch (fig. 
A1-36) exhibits a similar recovery curve. Other sandstone 
well sites in nonproducing zones exhibit linear recoveries 
(Stuart Section 31 and Barret Persson), continued linear 
declines (Bull Creek, MP22, All Night Creek #4, and 
Durham Ranch Section 6), or stable GWLs (Kennedy). 
Finally, excepting the Cedar Draw site, rates of GWL 
change at nonproducing well sites within the 200-ft sepa-
ration interval range from -8.7 ft/year (Bull Creek) to 7.9 
ft/year (Stuart Section 31); average rate of change in these 
wells is 0.4 ft/year. 

CONCLUSION
The Wyoming State Geological Survey (WSGS) examined 
groundwater level time series from 58 selected sandstone 

monitoring wells obtained by the U.S. Bureau of Land 
Management (BLM) through manual measurements col-
lected more or less every three months. For this report, 
the WSGS looked at groundwater level responses in the 
selected wells with the objectives of:

•	 Assessing maximum water level changes observed 
during CBM development in the PRB in relation 
to geographic location, proximity to developed 
coal seams, and depth of the completed interval 

•	 Evaluating aquifer water level responses to 
decreased water production within a 1 ½-mile 
radius buffer zone of each BLM monitoring well

Maximum changes in GWL in the monitored wells ranged 
from a 538-ft decline to a 36-ft (rise); the average change 
for all sandstone wells was -82 ft (decline) with a median 
value of -11.5 ft. The large disparity between the mean 
and median values is driven by 12 sandstone wells with 
large GWL declines (-197 to -538 ft). Scatter plot anal-
ysis revealed these highly impacted wells are completed 
within 200 vertical ft of the nearest monitored coal seam at 
depths greater than 600 ft. Six other wells (All Night Creek 
#4, Fourmile #2, Buffalo SE #4, Bull Creek #1, Durham 
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Ranch 14 #1, and Rose Draw #2) meeting both comple-
tion criteria showed GWL declines of less than 100 ft.

Scatter plot analysis revealed annual rates of GWL decline 
are higher for monitoring well sites located in producing 
zones, as expected. The average rate of GWL recovery for 
sandstones in nonproducing zones is 1.2 ft/year. Average 
annual rates of change at nonproducing sites ranged from a 
decline of 8.7 ft/year at Bull Creek (during 2012–2015) to 
a 46 ft/year rise (during 2013–2015) at Cedar Draw since 
the cessation of water production. 

The GWL data collected at the selected BLM sandstone 
monitoring well sites indicates:

1.	Sandstone units located 600 ft bgs and within 
200 ft of a producing coal seam were most likely 
to undergo large (>200 ft) GWL declines. In 
comparison, GWLs were relatively unaffected in 
sandstones positioned more than 200 ft from a 
producing coal seam. 

2.	 GWL response is unpredictable once water pro-
duction in a particular area has ceased. With the 
exception of the Cedar Draw site, GWLs exhib-
ited modest recoveries of less than 10 ft/year or 
continued declines of similar magnitude for years 
following the end of water production.

DISCUSSION
As expected, groundwater levels in some of the study’s 
monitoring wells are substantially impacted by water pro-
duction from coalbed methane wells in the surrounding 
areas (figs. A-1 through A-40). Other sources and dis-
charges of groundwater that may also impact monitoring 
well water levels should be considered, although a detailed 
analysis of these is beyond the scope of this report. 

Recharge Variation
Variations in recharge rates likely affect groundwater level 
recovery rates at some monitoring sites. However, actual 
recharge contributions to coal seams and deep sandstones 
(figs. A-1 through A-40) are likely obscured by groundwa-
ter level changes resulting from variations in water produc-
tion and sampling frequency of the monitoring wells. In 
contrast, water levels in the sandstone well at the 20 Mile 
site (fig. A1-1) apparently respond to seasonal recharge. 
Limited seasonal responses of one foot or less are observed 
in the shallowest sandstone wells at the MP 22 (fig. A1-26) 
and Redstone (fig. A1-26) sites when the hydrographs are 
viewed at small scale. All three sites are located along the 

eastern edge of the PRB in close proximity to recharge 
areas.

Furthermore, typical of semi-arid structural basins in 
Wyoming, the amount of recharge from precipitation is low 
in much of the PRB. Mathematical models by the USGS 
(Long and others, 2014) and WSGS (Taboga and Stafford, 
2016) estimate average annual recharge in the PRB at about 
0.2 inches, which would result in a groundwater level rise 
of one inch in a sandstone with a porosity of 20 percent. 
Finally, the recharge areas for the coal seams and the asso-
ciated deep sandstone aquifers are of limited areal extent 
and located along the eastern PRB (Taboga and others, 
2014, fig. 7), many miles from the monitoring wells. Upon 
infiltrating into an aquifer, the fixed amount of recharge is 
distributed within an increasingly large volume of aquifer 
matrix as it flows down gradient to the point that the resul-
tant change in groundwater level at a distant well site may 
be undetectable.

Producing Water Wells
SEO records indicate that approximately 350 non-CBNG 
groundwater wells are sited within the buffer zones of the 
monitoring well sites examined in this report. Most wells 
provide water for livestock (159), domestic supplies (52), 
miscellaneous uses (62), irrigation (4), industry (7) or a 
combination of these uses (58). One Fort Union municipal 
well owned by the City of Gillette is located near the Lone 
Tree monitoring well site. The industrial wells and many 
of the miscellaneous use wells are owned by oil and gas 
production and coal mining companies.

It is unlikely that the small groundwater withdrawals for 
domestic and livestock uses would substantially impact 
water levels in the BLM monitoring wells. Per capita 
domestic water use in the PRB is estimated at 150–300 
gallons per day (HKM, 2002), or 4–8 bpd. Thus, a house-
hold with a family of four would require 16–32 bpd. 
Groundwater withdrawals from livestock wells are diffi-
cult to quantify but are probably small as well. Withdrawals 
depend on the type of pump used (windmill or electric), the 
number of livestock served, the receiving unit (stock tank 
or reservoir), and seasonal watering duration. Furthermore, 
nearly 75 percent of the stock wells located near the mon-
itoring well sites in this study were permitted before 1995 
when substantial CBNG water production began.

On the other hand, the large withdrawals typical of irri-
gation, industrial, and miscellaneous wells may impact 
groundwater levels. Satellite imagery on Google Earth™ 
indicates that the four irrigation wells located near the 
monitoring sites were all permitted before 1969 and have 
been inactive since 1994 (Google Earth, 2017). In contrast, 
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many of the miscellaneous use permits located near the 
monitoring well sites are for multiple coal dewatering wells 
with permitted yields of up to 1,500 gpm and may still be 
in use. Coal mine dewatering may account, in part, for 
the post-production water level declines observed in the 
Wyodak Coal monitoring wells at the MP 2 and MP 22 
sites (Taboga and others, 2014). 

Injection Wells
WOGCC records indicate that the Hoe Creek and 
Durham Ranch Sec. 14 monitoring well sites each have 
one active injection well located within their 1.5-mile 
buffer zones. Both wells are more than 11,000 ft deep and 
inject into the Paleozoic Minnelusa Formation, which is 
hydraulically isolated from the Wasatch/Fort Union aquifer 
system by approximately 4,000 ft of shales in the Upper 
Cretaceous confining unit (Thamke and others, 2014). 
Assuming that these wells are properly constructed, it is 
highly unlikely that injections of even very large volumes of 
produced water into the Minnelusa aquifer would have any 
impact on groundwater levels in the Wasatch/Fort Union 
sandstones. 

Produced Water Discharges to Unlined Water     
Storage Pits and Stream Drainages
During CBNG development, one common method 
of produced water management was storage in unlined 
on-channel pits. Many of the storage pits were constructed 
by making improvements to existing on-channel stock 
water ponds; others were newly built along the channels 

of nearby ephemeral streams. Construction of these con-
tainment units was regulated by the SEO, while produced 
water discharges into them were regulated by the Wyoming 
Department of Environmental Quality. Substantial por-
tions of these discharged waters infiltrated into shallow 
aquifers (Healy and others, 2008; Brinck and Frost, 2007 ). 

A review of historic satellite imagery on Google Earth™ 
indicated that many of the buffer zones that encompass 
the monitoring wells examined in this study contained 
unlined water storage pits and on-channel livestock res-
ervoirs. Infiltration from these types of storage units may 
account for groundwater level rises of several feet in shallow 
sand aquifers at the Section 25 and Bowers well sites, but 
similar sands at other monitoring sites (All Night Creek, 
Buffalo SE, L Quarter Circle Hills, MP 22) appear to be 
unaffected.

Water Quality
The BLM has not conducted water quality monitoring in 
any of the monitoring wells included in this report or in the 
agency’s regional groundwater monitoring updates (Taboga 
and Stafford, 2014; Stafford and Wittke, 2013). However, 
the Gillette Area Groundwater Monitoring Organization 
has monitored groundwater levels and water quality in a 
large number of industry monitoring wells associated with 
coal mining in the eastern PRB. Also, the USGS conducted 
extensive water quality testing of selected SEO monitoring 
wells in the PRB during the early 2000s (Bartos and Ogle, 
2002).  Interested parties should contact these agencies and 
organizations directly. 
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Tables in Appendix

Table A1-1 summarizes depth to groundwater, monitoring dates, and water production information for each monitoring 
well site discussed in this report. Tables A1-2 and A1-3 list recent trends in groundwater levels observed at sites where 
CBNG production has been discontinued or is ongoing, respectively.

Table A1-1.  Summarizes depth to groundwater, monitoring dates, and water production information for each               
monitoring well site discussed in this report.

GWL change (ft) Water production

Monitoring well                           
site name Monitored unit

Depth to 
monitored 

unit 
(ft - bgs)

Period of record 
monitored

Initial depth                                              
to GW                                       

(ft)                                        

Maximum  
during POR 

[date]

Period of recorded 
water production

Maximum 
water 

production                                    
(bbls/month)                                    

[date]

Average                                            
production during                                                                     

2015                                             
(bbls/month)

20 MILE BUTTE 
Anderson Coal 896 Jan 2004 - Mar 2016 545 -161 

[Nov 2013] Apr 2001 - Feb 2015 57,681 
[Nov 2001] 450

Sandstone 1 500 Jan 2004 - Mar 2016 363 -42 
[Jan 2006] ------- ------- -------

21 MILE 
Big George Coal 1278 Aug 2001 - Nov 2015 627 -270 

[Nov 2015] Apr 2002 - Aug 2015 60,017 
[Oct 2006] 0

Sandstone 1 799 Aug 2001 - Mar 2016 533 -10 
[Nov 2015] ------- ------- -------

ALL NIGHT 
CREEK

Big George Coal 984 Mar 2001 - Nov 2007 440 -620 
[Nov 2007] Sept 2000 - Dec 2015 472,319 

[Dec 2002] 4

Sandstone 1 200 Mar 2002 - Jan 2016 95 -2 
[Nov 2010] ------- ------- -------

Sandstone 2 350 Mar 2002 - Jan 2016 201 2 
[Apr 2011] ------- ------- -------

Sandstone 3 580 Mar 2002 - Jan 2016 252 -11 
[Jan 2016] ------- ------- -------

Sandstone 4 840 Mar 2001 - Jan 2016 321 0 
[Mar 2001] ------- ------- -------

BAR 76
Wyodak Coal 726 Sept 1997 - Feb 2016 162 -616 

[Feb 2008] Oct 2001 - Nov 2013 284,679 
[July 2002] 0

Sandstone 1 659 Sept 1997 - Feb 2016 176 -273 
[Oct 2015] ------- ------- -------

BARRETT 
PERSSON

Wyodak Coal 1266 May 2001 - Feb 2016 826 -215 
[Jun 2008] Nov 1999 - Nov 2013 1,139,396 

[Feb 2000] 0

Sandstone 1 1180 May 2001 - Feb 2016 508 -306 
[Feb 2011] ------- ------- -------

BEAR DRAW
Big George Coal 2205 Mar 2006 - Mar 2016 499 -778 

[Jun 2015] May 2005 - Dec 2015 194,637 
[May 2011] 47,262

Sandstone 1 2052 Mar 2006 - Mar 2016 494 -290 
[Mar_2016] ------- ------- -------

BEAVER FED
Big George Coal 1186 Aug 2003 - May 2009 402 -433 

[May 2009] Jun 2006 - Dec 2015 141,699 
[Jan 2007] 35,418

Sandstone 1 552 Aug 2003 - Jan 2016 246 -7 
[Jan 2016] ------- ------- -------

BIG CAT
Big George Coal 1970 July 2003 - Mar 2016 200 -1424 

[Mar 2016] May 2004 - Dec 2015 446,647 
[Jul 20040] 52,447

Sandstone 1 862 July 2003 - Mar 2016 357 -11 
[Nov 2008] ------- ------- -------

 BLACKBIRD 
COLEMAN  

Wyodak Coal 1426 July 2000 - Mar 2016 371 -184 
[Mar 2016] Jul 2010 - Dec 2015 180,049 

[Jul 2004] 898

Sandstone 1 670 July 2000 - Mar 2016 251 -9 
[Mar 2016]
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Table A1-1. Continued. 

GWL change (ft) Water production

Monitoring well                           
site name Monitored unit

Depth to 
monitored 

unit 
(ft - bgs)

Period of record 
monitored

Initial depth                                              
to GW                                       

(ft)                                        

Maximum  
during POR 

[date]

Period of recorded 
water production

Maximum 
water 

production                                    
(bbls/month)                                    

[date]

Average                                            
production during                                                                     

2015                                             
(bbls/month)

BOWERS

Wyodak Coal 722 Jan `1998 - Jan 2005 420 -234 
[Jan 2005] Jul 1998 - Nov 2015 244,670 

[Mar 2001] 24,421

Sandstone 1 65 May 2002 - Feb 2016 60 -12 
[Jan 2005]

Sandstone 2 265 May 2002 - Feb 2016 257 -30 
[Dec 2005]

Sandstone 3 352 May 2002 - Feb 2016 301 -17 
[May 2012]

Sandstone 4 520 Apr 2002 - Feb 2016 335 -25 
[May 2012]

BUFFALO SE

Smith Coal 1588 Oct 2001 - Mar 2016 281 -55 
[May 2008] Jun 2003 - Sept 2003 1,800 

[Aug 2003] 0

Sandstone 1 55 May 2002 - May 
2007 48 -4 

[Feb 2006]

Sandstone 2 155 Nov 2001 - Mar 2016 144 1 
[Nov 2008]

Sandstone 3 520 Mar 2002 - Mar 2016 419 21 
[Sept 2013]

Sandstone 4 1482 Aug 2001 - Mar 2016 338 10 
[Jun 2006]

BULL CREEK

Anderson Coal 974 Dec 2005 - Mar 2016 215 -177 
[Aug 2012] May 2004 - Dec 2011 20,155 

[Sept 2006] 0

Sandstone 1 480 Dec 2005 - Nov 2015 Artesian -12 
[Nov 2015]

Sandstone 2 876 Dec 2005 - Mar 2016 92 -88 
[Mar 2016]

BULLWHACKER
Big George Coal 1338 Apr 2002 - Dec 2009 93 -1071 

[Dec 2009] Aug 2001 - Dec 2015 368,412 
[Jan 2003] 52,623

Sandstone 1 1202 Apr 2002 - Jan 2016 25 -294 
[Nov 2015]

CEDAR DRAW Wall Coal 1577 Feb 2004 - Mar 2016 231 -641 
[Sept 2011] June 2003 - Feb 2015 542823 

[Nov 2006] 5,138

Sandstone 1 1390 Feb 2004 - Mar 2016 227 -538 
[Sept 2011]

DILTS
Wyodak Coal 580 Apr 1999 - Sept 2015 341 -317 

[Feb 2008] Apr 2001 - Jun 2013 235,302 
[Aug 2004] 0

Sandstone 1 260 Apr 1999 - Feb 2016 120 -7 
[Jan 2009]

DURHAM 
RANCH SEC 14 

Wyodak Coal 716 Jan 1998 - Mar 2016 268 -548 
[Jan 2004]

May 1999 - May 
2010

394,439 
[Jul 2002] 0

Sandstone 1 666 Jan 1998 - Mar 2016 25 -29 
[Dec 2015]

DURHAM 
RANCH SEC 6 

Wyodak Coal 328 Nov 1997 - Mar 2016 118 -245 
[Mar 2007] Jul 1999 - Oct 2011 433,717 

[Feb 2001] 0

Sandstone 1 255 Nov 1997 - Mar 2016 96 -84 
[Mar 2016]
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Table A1-1. Continued. 

GWL change (ft) Water production

Monitoring well                           
site name Monitored unit

Depth to 
monitored 

unit 
(ft - bgs)

Period of record 
monitored

Initial depth                                              
to GW                                       

(ft)                                        

Maximum  
during POR 

[date]

Period of recorded 
water production

Maximum 
water 

production                                    
(bbls/month)                                    

[date]

Average                                            
production during                                                                     

2015                                             
(bbls/month)

FOURMILE

Big George Coal 1359 Nov 2007 - Jan 2016 867 -26 
[Dec 2008] Feb 2004 - Dec 2015 121,256

Sandstone 1 778 Nov 2007 - Jan 2016 427 -5 
[Aug 2015]

Sandstone 2 
(Underburden) 1546 Nov 2007 - Jan 2016 810 -3 

[Aug 2015]

HOE CREEK
Wyodak Coal 830 Jan 1998 - Mar 2016 231 -679 

[Feb 2008] Apr 1998 - Nov 2010 535378 
[Jan 2000]

N/A (0) Last data 
2012

Sandstone 1 150 Jan 1998 - Nov 2015 101 -11 
[Nov 2015]

JUNIPER

Big George Coal 1548 Mar 2001 - Mar 2016 168 -1446 
[June 2008] July 2002 - Dec 2015 445,330 

Sept 2004 15,917

Sandstone 1 550 Mar 2002 - Sept 2015 429 -3 
[Aug 2008]

Sandstone 2 1086 Jun 2001 - Mar 2016 342 -42 
[Nov 2015]

KENNEDY
Anderson Coal 707 Jul 2000 - Jan 2015 428 -222 

[Sept 2008] May 1999 - Jan 2010 146,083 
[Jan 2001] 0

Sandstone 1 520 Jul 2000 - Jan 2015 270 -18 
[Aug 2009]

LONE TREE 

Wyodak-
Anderson Coal 647 Feb 2000 - Jan2016 453 -207 

Nov 2012 Mar 1992 - Mar 2010 223975 
Sept 2006 N/A

Sandstone 1 490 Feb 2000 - Jan2016 286 -9 
Mar 2005

LOWER 
PRAIRIE DOG

Anderson Coal 638 Aug 2000 - Mar 2016 168 -477 
[Dec 2013]

Mar 2000 - June 
2015

883,431 
[Jan 2002] 30,675

Sandstone 1 235 Jan 2002 - Mar 2016 193 -4 
[May 2010]

Sandstone 2 352 Aug 2000 - Mar 2016 197 -20 
[May 2010]

LQC HILLS
Cook Coal 684 Apr 2005 - Feb 2016 23 -268 

[Nov 2011] Mar 2002 - June 2015 130,515 
[Apr 2002] 18,516

Sandstone 1 493 Apr 2005 - Feb 2016 41 -26 
[Feb 2016]

MP 2
Wyodak Coal 336 May 1993 - Feb 2016 163 -242 

[May 2004] July 2003 - Mar 2009 796,332 
[Apr 2001]

0 
Last data 2011

Sandstone 1 260 May 1993 - Nov 2015 52 -65 
[May 2015]

MP 22

Wyodak Coal 438 Mar 1993 - Feb 2016 174 -316 
[Jan 2002] Mar 1993 - Mar 2008 624,794 

[Mar 2000]
0 

Last data 2012

Sandstone 1 15 Apr 1998 - Feb 2016 20 -3 
[Sept 2010]

Sandstone 2 107 Apr 1998 - Feb 2016 38 -1 
[Feb 2016]

Sandstone 3 340 Feb 1993 - Feb 2016 84 -57 
[Feb 2016]

NAPIER
Big George Coal 1585 May 2001 - Aug 2012 432 -500 

[Aug 2012] Sept 2004 - Dec 2015 130,330 
[Dec 2012] 77,671

Sandstone 1 1462 May 2001 - Feb 2016 403 -302 
[Feb 2016]
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Table A1-1. Continued. 

GWL change (ft) Water production

Monitoring well                           
site name Monitored unit

Depth to 
monitored 

unit 
(ft - bgs)

Period of record 
monitored

Initial depth                                              
to GW                                       

(ft)                                        

Maximum  
during POR 

[date]

Period of recorded 
water production

Maximum 
water 

production                                    
(bbls/month)                                    

[date]

Average                                            
production during                                                                     

2015                                             
(bbls/month)

NORTH 
GILLETTE

Anderson Coal 534 Sept 2001 - Jan 2016 500 -75 
[Feb 2003] Aug 1999 - Jan 2011 635,349 

May 2000
0 

Last data 2014

Sandstone 1 215 Sept 2001 - Jan 2016 122 -6 
[Aug 2007]

PALO
Canyon Coal 426 Feb 2001 - Jan 2016 299 -143 

[Jan 2011] Jan 2001 - Jun 2015 37,647 
Mar 2001 619

Sandstone 1 290 Feb 2001 - Feb 2014 246 -2 
[Feb 2014]

REDSTONE
Canyon Coal 241 Oct 1998 - Jan 2016 33 -225 

[Mar 2002] Jul 1999 - Jun 2012 445,936 
[Jan 2000]

0 
Last data 2014

Sandstone 1 160 Oct 1998 - Jan 2016 25 5 
[Apr 2001]

ROSE DRAW

Wall Coal 1774 May 2009 - Feb 2016 51 -186 
[Feb 2012] Apr 2008 - Oct 2012 153402 

[Apr 2010] 0

Sandstone 1 989 May 2009 - Feb 2016 67 -24 
[Dec 2015]

Sandstone 2 
(Underburden) 1840 Sept 2009 - Feb 2016 13 -67 

[Feb 2016]

SASQUATCH
Big George Coal 1435 Jan 1998 - Mar 2016 230 -573 

[Dec 2015] Feb 2002 - Dec 2015 790079 
[June 2005] 22,154

Sandstone 1 1296 Jul 2001 - Mar 2016 225 -391 
[Dec 2015]

SEC 25
Wyodak Coal 420 Nov 1996 - Mar 2016 48 -405 

[Feb 2005] Oct 1999 - Jun 2012 536,697 
[Mar 2007] 0

Sandstone 1 134 Nov 1996 - Mar 2016 28 -6 
[Dec 2015]

STREETER
Big George Coal 1351 Aug 2004 - Jan 2016 159 -162 

[Jan 2016] Oct 2007 - Jan 2011 18,518 
[Apr 2009] 0

Sandstone 1 522 Aug 2004 - Jan 2016 214 -11 
[May 2012]

STUART 
SECTION 31

Wyodak Coal 664 Sept 1997 - Mar 2016 322 -458* 
[Jan 2004] Mar 2000 - June 2011 1,455,235 

[Apr 2000]
0 

Last data 2013

Sandstone 1 555 Oct 1997 - Mar 2016 253 -79 
[Dec 2009]

Sandstone 2 
(Underburden) 794 Oct 1997 - Mar 2016 129 -459 

[Sept 2010]

THRONE
Wyodak Coal 1506 May 2001 - Feb 2016 815 -308 

[May 2006] Aug 2000 - Dec 2015 248,161 
[Jun 2003] 0

Sandstone 1 1400 May 2001 - Feb 2016 601 -300 
[Sept 2008]

WEST PINE 
TREE

Big George Coal 1347 Sept 2007 - Jan 2016 272 -716 
[Nov 2012] Jul 2007 - Dec 2015 141,249 

[Feb 2009] 27,627

Sandstone 1 538 Sept 2007 - Jan 2016 272 36 
[Nov 2010]

WILD TURKEY
Big George Coal 1205 Nov 2004 - Mar 2016 268 -937 

[Feb 2013] Oct 2005 - Dec 2015 1,425,974 
[Jul 2006] 70,875

Sandstone 1 998 Nov 2004 - Mar 2016 128 -198 
[Mar 2016]
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Table A1-1. Continued. 

GWL change (ft) Water production

Monitoring well                           
site name Monitored unit

Depth to 
monitored 

unit 
(ft - bgs)

Period of record 
monitored

Initial depth                                              
to GW                                       

(ft)                                        

Maximum  
during POR 

[date]

Period of recorded 
water production

Maximum 
water 

production                                    
(bbls/month)                                    

[date]

Average                                            
production during                                                                     

2015                                             
(bbls/month)

WILLIAMS 
CEDAR DRAW 

Smith Coal 410 April 2007 - Feb 2016 169 -15 
[Oct 2015]

Sandstone 1 166 April 2007 - Feb 2016 116 3 
[Jul 2012]

Anderson Coal 735 April 2007 - Feb 2016 244 -344 
[Feb 2016] Oct 2000 - Dec 2015

58,920 
Jun 2009 12,678

Sandstone 2 
(Underburden) 564 April 2007 - Feb 2016 260 -355 

[Feb 2016]

WORMWOOD

Wyodak Coal 1074 Dec 2006 - Feb 2016 262 -799 
[Feb 2016] Aug 2006 - Dec 2015 504,162 

Mar 2007

Sandstone 1 478 Dec 2006 - Feb 2016 77 6 
[Mar 2009]

Sandstone 2 
(Underburden) 1287 Dec 2006 - Feb 2016 115 -493 

[Nov 2015]
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Table A1-2. List of recent trends in groundwater levels observed at sites where CBNG production has been discontinued.

Site name/ 
water level status in associated 

coal seam
Monitored unit

Direction 
current 

observed trend

Trend interval 
[~36 months]

Annual rate of 
change 
[ft/year]

BEAR DRAW 
Big George Recovering Sandstone 1 Declining Dec 2012 - Nov 2015 -31.8

BEAVER FED 
Big George Insuf Data Sandstone 1 Stable Dec 2012 - Oct 2015 -0.9

BIG CAT 
Big George Insuf Data Sandstone 1 Stable Dec 2012 - Dec 2015 -0.2

BLACKBIRD COLEMAN  
Wyodak Declining Sandstone 1 Stable Dec 2012 - Nov 2015 -1.4

BOWERS 
Wyodak Insuf Data

Sandstone 1 Stable Dec 2012 - Dec 2015 -0.2

Sandstone 2 Stable Dec 2012 - Dec 2015 0.2

Sandstone 3 Stable Dec 2012 - Dec 2015 0.9

Sandstone 4 Recovering Dec 2012 - Dec 2015 1.8

BULLWHACKER 
Big George Insuf Data Sandstone 1 Declining Nov 2012 - Nov 2015 -14.6

FOURMILE 
Big George Declining

Sandstone 1 Stable Nov 2012 - Nov 2015 0.0

Sandstone 2 
(Underburden) Declining Nov 2012 - Nov 2015 -3.7

JUNIPER 
Big George Iwell Dry

Sandstone 1 Stable Nov 2012 - Sept 2015 -0.1

Sandstone 2 Declining Nov 2012 - Nov 2015 -2.4

NAPIER 
Big George Insuf Data Sandstone 1 Declining Oct 2012 - Dec 2015 -45.5

SASQUATCH 
Big George Declining Sandstone 1 Declining Oct 2012 - Dec 2015 -16.5

WEST PINE TREE 
Big George Declining Sandstone 1 Stable Jul 2014 - Nov 2015 0.2

WILD TURKEY 
Big George Declining Sandstone 1 Declining Nov 2012 - Nov 2015 -16.6

WILLIAMS CEDAR DRAW 
Smith Declining Sandstone 1 Stable Oct 2012 - Oct 2015 -0.3

WILLIAMS CEDAR DRAW 
Wyodak Declining 

Sandstone 2 
(Underburden) Declining Oct 2012 - Oct 2015 -20.4

WORMWOOD 
Wyodak Declining

Sandstone 1 Stable Nov 2012 - Nov 2015 -0.2

Sandstone 2 
(Underburden) Declining Nov 2012 - Nov 2015 -38.1
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Site name/ 
water level status in 

associated coal seam
Monitored unit

Direction 
current 

observed trend

Trend interval 
[variable]

Annual rate of 
change 
[ft/year]

Notes

20 MILE BUTTE  
Recovering Anderson Sandstone 1 Declining Mar 2015 - Dec 2015 -5.3 Seasonal fluctuations

21 MILE  
Declining Big George Sandstone 1 Stable Sept 2011 - Nov 2015 -1.7

ALL NIGHT CREEK 
Big George Insuf Data

Sandstone 1 Stable Aug 2012 - Nov 2015 0.1

Sandstone 2 Stable Aug 2012 - Nov 2015 0.3

Sandstone 3 Declining Aug 2012 - Nov 2015 -1.3

Sandstone 4 Declining Aug 2012 - Nov 2015 -1.6

BAR 76 
Wyodak Recovering Sandstone 1 Insuff. Data -------

BARRETT PERSSON 
Wyodak Recovering Sandstone 1 Recovering Dec 2013 - Dec 2015 5.8

BUFFALO SE 
Smith Stable

Sandstone 1 Stable Sept 2003 - Mar 2007 -0.4

Sandstone 2 Stable Sept 2003 - Dec 2015 0.1

Sandstone 3 Recovering Sept 2003 - Dec 2015 1.7

Sandstone 4 Stable Sept 2003 - Dec 2015 -0.1

BULL CREEK 
Anderson Recovering

Sandstone 1 Artesian  
Insuff Data Dec 2005 - Nov 2015

Sandstone 2 Declining Mar 2012 - Nov 2015 -8.7

CEDAR DRAW 
Wall Recovering Sandstone 1 Recovering Nov 2012 - Dec 2015 45.7

DILTS 
Wyodak Well Dry Sandstone 1 Stable Aug 2013 - Dec 2015 0.4

DURHAM RANCH 
SEC 14 

Wyodak Recovering
Sandstone 1 Declining Jun 2010 - Dec 2015 -1.1

DURHAM RANCH 
SEC 6 

Wyodak Insuf.Data 
Sandstone 1 Declining Dec 2011 - Dec 2015 -2.0

HOE CREEK 
Wyodak Recovering Sandstone 1 Declining Dec 2010 - Nov 2015 -1.0

Table A1-3.  List of recent trends in groundwater levels observed at sites where CBNG production is ongoing.
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Table A1-3. Continued. 

Site name/ 
water level status in 

associated coal seam
Monitored unit

Direction 
current 

observed trend

Trend interval 
[variable]

Annual rate of 
change 
[ft/year]

Notes

KENNEDY 
Anderson Recovering Sandstone 1 Stable Mar 2010 - Nov 2015 0.2

LONE TREE 
Wyodak Recovering Sandstone 1 Recovering Jul 2013 - Dec 2015 1.9

LOWER PRAIRIE 
DOG 

Anderson Recovering

Sandstone 1 Recovering Jul 2015 - Nov 2015 1.3

Sandstone 2 Stable Jul 2015 - Nov 2015 0.1

LQC HILLS 
Cook Insuf Data Sandstone 1 Declining Jul 2015 - Nov 2015 -2.9

MP 2 
Wyodak Fluctuating Sandstone 1 Stable Apr 2009 -Nov 2015 0.9

MP 22 
Wyodak Fluctuating

Sandstone 1 Stable Feb 2008 - Nov 2015 0.1

Sandstone 2 Stable Feb 2008 - Nov 2015 0.0

Sandstone 3 Declining Feb 2008 - Feb 2016 -1.6

NORTH GILLETTE 
Anderson Recovering Sandstone 1 Stable Mar 2010 - Dec 2015 0.0

PALO 
Canyon Insuf Data Sandstone 1  

Insuff. Data ------- -------

REDSTONE 
Canyon Recovering Sandstone 1 Stable Aug 2012 - Nov 2015 -0.4

ROSE DRAW 
Wall Recovering

Sandstone 1 Declining Dec 2012 - Dec 2015 -3.8

Sandstone 2 
(Underburden) Declining Dec 2012 - Dec 2015 -2.9

SEC 25 
Wyodak Recovering Sandstone 1 Stable Jul 2012 - Dec 2015 -0.9

STREETER 
Big George Declining Sandstone 1 Stable Feb 2011 - Nov 2015 0.4

STUART SEC 31 
Wyodak Well Dry

Sandstone 1 Recovering July 2011 - Dec 2015 3.8

Sandstone 2 
(Underburden) Recovering July 2011 - Dec 2015 7.9

THRONE 
Wyodak Recovering Sandstone 1 Recovering Sept 2010 - Nov 2015 6.8
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Explanation of Symbols Used in Appendix Figures
The hydrographs (figs. A1-1 through A1-40) contained in 
the appendix represent depth-to-groundwater measure-
ments in coal seam and associated sandstone wells at 40 
monitoring well sites scattered across the Powder River 
Basin. Most of the monitoring sites measure groundwater 
levels in one targeted coal seam and one associated sand-
stone layer. However, water levels are measured in two 
sandstones at seven sites (Fourmile, Stuart Section 31, 
Wormwood, Bull Creek, Juniper, Rose Draw, and Lower 
Prairie Dog), three sandstones at the MP 22 well site, and 
four sandstones at All Night Creek, Bowers, and Buffalo 
SE. Only one sandstone well hydrograph is shown for the 
Bull Creek site; there was insufficient data for the second 
well. Finally, two coal seams (Smith and Anderson) and 
two sandstones were monitored at the Williams Cedar 
Draw site.

In table A1-1, sandstones are numbered in increasing 
order of depth. For example, Sandstone 1 is the shallow-
est, Sandstone 2 is the next deepest, etc. This convention, 
used to differentiate sandstones at sites where multiple 
overlying sandstones are monitored (All Night Creek, 
Bowers, Buffalo SE, Juniper, Lower Prairie Dog, and MP 
22) has been extended to the symbols contained in the 
hydrographs.

Manual measurements are represented by triangles and 
pressure transducer measurements by lines:		

Δ, — Black for coal seams

Δ, — Orange for the closest overlying monitored       sand-
stone

Δ, — Olive green for the closest underlying sandstone

Additional symbols are used at sites where multiple over-
lying sandstones are monitored (All Night Creek, Bowers, 
Buffalo SE, Juniper, Lower Prairie Dog, and MP 22).

Δ, — Brown for the shallowest overlying sandstone 
(Sandstone 1)

Δ, — Violet for Sandstone 2

Δ, — Red for Sandstone 3

At the Williams Cedar Draw site, the primary monitored 
coal seam (Anderson) and its associated sandstone are 
represented by triangles and the Smith coal seam and its 
associated sandstone by squares (, ) using the colors 
specified above.

Black diamonds () represent instances where manual 
measurement determined that the wellbore was dry to its 
total depth. 

Total water production, as 1,000 barrels/month (mbbls/
month), is shown for CBNG wells associated with each 
monitoring well site as a continuous blue line.
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Figure A1-1. Depth to groundwater measurements in the Anderson coal seam and associated sandstone(s) at 
the 20 Mile monitoring site.
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Figure A1-2. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) at 
the 21 Mile monitoring site.
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Figure A1-3. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) at 
the All Night Creek monitoring site.

Figure A1-4. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Bar 76 monitoring site.
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Figure A1-6. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) at 
the Bear Draw Unit monitoring site.

Figure A1-5. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at the 
Barrett Persson monitoring site.
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Figure A1-8. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) at 
the Big Cat monitoring site.

Figure A1-7. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) at 
the Beaver Federal monitoring site.
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Figure A1-9. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at the 
Blackbird Coleman monitoring site.

Figure A1-10. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Bowers monitoring site.
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Figure A1-11. Depth to groundwater measurements in the Smith coal seam and associated sandstone(s) at the 
Buffalo SE monitoring site.

Figure A1-12. Depth to groundwater measurements in the Anderson coal seam and associated sandstone(s) at 
the Bull Creek monitoring site.
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Figure A1-13. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Bullwhacker monitoring site.

Figure A1-14. Depth to groundwater measurements in the Wall coal seam and associated sandstone(s) at the 
Cedar Draw monitoring site.
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Figure A1-15. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Dilts monitoring site.

Figure A1-16. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Durham Ranch Section 6 monitoring site.
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Figure A1-18. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Fourmile monitoring site.

Figure A1-17. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Durham Ranch Section 14 monitoring site.
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Figure A1-19. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Hoe Creek monitoring site.

Figure A1-20. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Juniper monitoring site.
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Figure A1-21. Depth to groundwater measurements in the Anderson coal seam and associated sandstone(s) at 
the Kennedy monitoring site.

Figure A1-22. Depth to groundwater measurements in the Crook coal seam and associated sandstone(s) at the 
L Quarter Circle Hills monitoring site.
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Figure A1-23. Depth to groundwater measurements in the Wall coal seam and associated sandstone(s) at the 
Lone Tree monitoring site.

Figure A1-24. Depth to groundwater measurements in the Anderson coal seam and associated sandstone(s) at 
the Lower Prairie Dog monitoring site.
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Figure A1-25. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the MP 2 monitoring site.

Figure A1-26. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the MP 22 monitoring site.
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Figure A1-28. Depth to groundwater measurements in the Anderson coal seam and associated sandstone(s) at 
the North Gillette monitoring site.

Figure A1-27. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Napier monitoring site.
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Figure A1-29. Depth to groundwater measurements in the Canyon coal seam and associated sandstone(s) at 
the Palo monitoring site.
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Figure A1-30. Depth to groundwater measurements in the Canyon coal seam and associated sandstone(s) at 
the Redstone monitoring site.
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Figure A1-32. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Sasquatch monitoring site.

Figure A1-31. Depth to groundwater measurements in the Wall coal seam and associated sandstone(s) at the 
Rose Draw monitoring site.
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Figure A1-34. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Streeter monitoring site.
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Figure A1-33. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Section 25 monitoring site.
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Figure A1-36. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Throne monitoring site.

Figure A1-35. Depth to groundwater measurements in the Wyodak coal seam and associated sandstone(s) at 
the Stuart Section 31 monitoring site.
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Figure A1-38. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Wild Turkey monitoring site.
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Figure A1-37. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the West Pine Tree monitoring site.
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Figure A1-40. Depth to groundwater measurements in the Big George coal seam and associated sandstone(s) 
at the Wormwood monitoring site.

Figure A1-39. Depth to groundwater measurements in the Smith and Anderson coal seam and associated sand-
stone(s) at the Williams Cedar Draw monitoring site.
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