Fault scarps on late Quaternary geomorphic surfaces present along the base of the Teton Range in Jackson Hole, Wyoming, attest to geologically recent movement of the Teton normal fault. This map depicts late Quaternary Teton fault scarps interpreted from field observations (2015–2018) and surface topography from two light detection and ranging (lidar) datasets (collected by Grand Teton National Park and Teton County Conservation District in 2014 and 2019). We used lidar-derived digital elevation models (at 1-m cell size) to interpret and map fault scarps of likely late Quaternary age and discernible at a scale of 1:75,000. We recognize that fault scarps can be subtle and/or indefinite at map scale and that the mapped scarps represent those that are most obvious and/or persistent. We do not show inferred traces connecting mapped fault scarps, such as those in areas where fault scarps may be concealed beneath sediments, vegetation, or surficial deposits. Fault scarps on late Quaternary geomorphic surfaces (~mid-Pleistocene to late Pleistocene) are particularly well developed along the base of the Teton Range in Jackson Hole, Wyoming. Our mapping includes groups of small (less than ~2 m high) generally north-south-trending scarps on late Pleistocene to Holocene surfaces. We note the occurrence of inferred traces occurring at the mouths of Waterfalls Canyon and Colter Canyon (Ostenaa and others, 1993) and an inferred trace occur at the mouths of Polecat Creek faults, a subset of the Polecat Creek system (Abrams, 2007). Fault scarps at the Potholes, the scarps present north side of the Snake River. The mapping of these scarps is complicated by extensive landsliding. We reviewed previous mapping of the Teton fault by Gilbert and others (1983), Love and others (1992), Ostenaa, Pierce and others (1998) that are currently concealed by the high-water extent of Jackson Lake. Paleoseismic data from these sites help constrain the timing and displacement of Teton fault earthquakes. We also show where known and others inferred trace scarps are obscured by the high-water extent of Jackson Lake. This map benefited from the collaboration and input from many individuals and organizations. We thank the U.S. Geological Survey, 1BGC Engineering, Inc., 2U.S. Geological Survey, 3Idaho State University, 4MagnaTerra Cartographic, Inc. Mark S. Zellman, Christopher B. DuRoss, and Glenn D. Thackray for their assistance with field checking, editorial review, and comments. We would also like to thank Jeanne Connor, M., ed., Final report on the Jackson Lake archeological project, Grand Teton National Park, Wyoming: Midwest Archeological Center for production of the final report. Individuals with disabilities who require an alternative form of this publication in accessible formats (e.g., Braille, large print, audiotape, or diskette) should contact us by phone at 307-766-2286, ext. 224, or by email at wsgs-info@wyo.gov. This publication is available for free and is located at 89, no. 2b, March/April 2018. [1475x928]Pierce, K.L., Lundstrom, S., and Good, J.M, 1998, Geologic setting of archeological sites in the Jackson Lake area, Wyoming: Seismological Research Letters, v. 89, no. 2b, March/April 2018. [1475x964]Pierce, K.L., Licciardi, J.M., Good, J.M., and Jaworowski, C., 2018, Pleistocene glaciation of the Jackson Hole area, Wyoming: Geophysical Research Letters, v. 45, no. 18, 9719–9726. [1475x1000]Ostenaa, D.A., Wood, C., and Gilbert, J.D., 1993, Seismotectonic study for Grassy Lake Dam-Minidoka project, Wyoming: U.S. Army Corps of Engineers and the Idaho National Engineering and Environmental Laboratory. [1475x1108]Larsen, D.J., Finkenbinder, M.S., Abbot, M.B., and Ofstun, A.R., 2016, Deglaciation and postglacial environmental changes in the Teton Mountain Range record at Jenny Lake, Grand Teton National Park, Wyoming: Quaternary Science Reviews, v. 138, 166–177. [1475x1204]DuRoss, C.B., Gold, R.D., Briggs, R.W., Delano, J.E., Ostenaa, D.A., Zellman, M.S., Scharer, K.R., McPhillips, D., Pierce, K.L., Lundstrom, S., and Good, J.M., 2015, Elementary community of archeological sites at the mouths of Polecat Creek, a subset of the Polecat Creek system (Abrams, 2007), in central Jackson Hole mostly face west, opposite (antithetic) to the Teton fault trace. These scarps are inferred traces, which were interpreted to reflect fault movement south of the Teton Range. These inferred traces are mapped at the north end of Colter Canyon, and are mapped at the mouth of Colter Canyon, which is where the inferred traces are mapped. [1475x1120]Note: This map is intended for use in conjunction with the field project report, The Teton fault: Wyoming State Geological Survey Open File Report 2019-1, scale 1:75,000. [1475x242]REFERENCES [1475x92]Pierce, K.L., Lundstrom, S., and Good, J.M, 1998, Geologic setting of archeological sites in the Jackson Lake area, Wyoming: Seismological Research Letters, v. 89, no. 2b, March/April 2018. [1475x964]Pierce, K.L., Licciardi, J.M., Good, J.M., and Jaworowski, C., 2018, Pleistocene glaciation of the Jackson Hole area, Wyoming: Geophysical Research Letters, v. 45, no. 18, 9719–9726. [1475x1000]Ostenaa, D.A., Wood, C., and Gilbert, J.D., 1993, Seismotectonic study for Grassy Lake Dam-Minidoka project, Wyoming: U.S. Army Corps of Engineers and the Idaho National Engineering and Environmental Laboratory. [1475x1108]Larsen, D.J., Finkenbinder, M.S., Abbot, M.B., and Ofstun, A.R., 2016, Deglaciation and postglacial environmental changes in the Teton Mountain Range record at Jenny Lake, Grand Teton National Park, Wyoming: Quaternary Science Reviews, v. 138, 166–177. [1475x1204]DuRoss, C.B., Gold, R.D., Briggs, R.W., Delano, J.E., Ostenaa, D.A., Zellman, M.S., Scharer, K.R., McPhillips, D., Pierce, K.L., Lundstrom, S., and Good, J.M., 2015, Elementary community of archeological sites at the mouths of Polecat Creek, a subset of the Polecat Creek system (Abrams, 2007), in central Jackson Hole mostly face west, opposite (antithetic) to the Teton fault trace. These scarps are inferred traces, which were interpreted to reflect fault movement south of the Teton Range. These inferred traces are mapped at the north end of Colter Canyon, and are mapped at the mouth of Colter Canyon, which is where the inferred traces are mapped.