Interpreting the past, providing for the future

Regional-Scale Geochemical Investigations from
Legacy Rock and Sediment Datasets

By Jesse R. Pisel and Charles P. Samra

Open File Report 2019-2
April 2019



Wyoming State Geological Survey

Erin A. Campbell, Director and State Geologist

Regional-Scale Geochemical Investigations from Legacy Rock and
Sediment Datasets

By Jesse R. Pisel and Charles P. Samra

Layout by Christina D. George

Open File Report 2019-2
Wyoming State Geological Survey
Laramie, Wyoming: 2019

This Wyoming State Geological Survey (WSGS) Open File Report is preliminary and may require
additional compilation and analysis. Additional data and review may be provided in subsequent years. For
more information about the WSGS, or to download a copy of this Open File Report, visit www.wsgs.wyo.
gov. The WSGS welcomes any comments and suggestions on this research. Please contact the WSGS at
307-766-2286, or email wsgs-info@wyo.gov.

Citation: Pisel, J.R., and Samra, C.P, 2019, Regional-scale geochemical investigations from legacy rock and sediment datasets:
Wyoming State Geological Survey Open File Report 2019-2, 20 p.

ii



Table of Contents

ABSTIaACT . .« o o et ettt 1
INErOdUCTON .« o ottt e e et e e e e e e e e e e e e 1
Background. . . . ... 1
Sample TYPes . . ..o 1
National Uranium Resource Evaluation Sediment Data .. ... 2
National Geochemical Database Rock Data . . .. ... vuutuu e 2
Hydrologic Units . . ... ..o 2
Methods . .o oot 5
Multiple Imputation by Chained Equations .. ... 5
Spatial ASSOCIAtIONS . . . . ..ottt 9
Getis-Ord G* Hotspot Analysis . .............o. i 10
GXValues .. ..o 10
ClassifiCation . . . ...ttt 10
Classification Validation Workflow . . . ... ... i e 12
ReSUIES . . o oot 13
THEANIUIN « .« e e et e e e e e e e e 13
Rare Earth Elements . . . ... 13
Validation. . . . ..o oo 13
Case STUAIES . - .« ottt 16
THeanium . . oo e 16

Rare Earth Elements . . .. ..o 18
Future Sampling . ... ... 18
Summary and Conclusions . . . ... ... . 18
REFEIENCES .« v v ettt ettt e e e e 20

List of Figures

Figure 1. Map showing locations of NURE sediment samples and NGDBR rock-chip samples.............. 3
Figure 2. Data-dense matrices that document patterns in missing data.. . ......... ... . ... oL, 4
Figure 3. Map of the hydrologic unit subwatershed basins across Wyoming. .. .......................... 5
Figure 4. Comparison of imputed and actual values for lutetium, niobium, and titanium. ................. 8
Figure 5. Maps of contiguity spatial networks used in hotspot analysis...................... ... ... ... 9
Figure 6. Visual representation of the classification scheme . .. ........ ... ... ... ... .. o L. 11
Figure 7. Map showing results from hotspot analysis and classification for titanium ................ .. ... 14

iii



Figure 8. Map showing results from hotspot analysis and classification for all rare earth elements . . .............

Figure 9. Map of results from case studies

Figure 10. Map of case-study results from the Greater Green River Basin . ................... ... .........

v



ABSTRACT

Understanding the regional distribution of elements is important for optimizing mineral sampling programs at
large and small scales. This study takes advantage of sediment samples from the National Uranium Resource
Evaluation program and rock-chip samples from the National Geochemical Database to predict regional changes
in relative abundance of elements in Wyoming. We use multiple imputation by chained equations to assign values
to the incomplete geochemical data suite of these two historical programs, resulting in a complete geochemical
dataset of 48 elements. From the complete dataset, we use hotspot analysis to predict areas of interest for both the
sediment and rock data; areas are defined by watersheds. We then classify each watershed in the state by mineral-
ization potential. The classification model is validated using rare earth elements and titanium as case studies using
independent samples not included in the model. We find the model tends to overestimate the number of unsampled
mineralized areas, which we interpret as more beneficial than underestimation. The model does well in predicting
areas of known and potential mineralization, and provides a way to rapidly prioritize areas of interest and streamline
sampling programs at the regional scale.

INTRODUCTION

Geologic knowledge spanning an entire state expedites finding and exploiting new mineral resources. Implementing
statewide rock-sampling programs to achieve this knowledge can be costly. However, geochemical data covering
a substantial portion of the state are freely available from historical sampling programs. These geochemical data
provide insight into areas of interest for potential resource development without requiring an in-depth geologic
understanding of the area. We use spatial statistics and a classification scheme to document areas with known
mineralization, missed mineralization, and potential mineralization throughout Wyoming. This classification
highlights specific areas for focused sampling programs and further in-depth geologic mapping, thereby reducing
time and cost to evaluate mineral resources across the state. The results of classification and hotspot analysis for all
48 elements are available online through the Wyoming State Geological Survey’s Mines and Minerals Map (http://
wsgs.maps.arcgis.com/apps/webappviewer/index.html?id=af948a51f4954a81adeae8935440cd28) and publication
search page (https://www.wsgs.wyo.gov/pubs-maps/publication-search).

BACKGROUND

Sample Types

When evaluating and interpreting geochemical data, it is important to understand what each sample type rep-
resents, recognizing the differences as well as the limitations and benefits of each type. Two sample types were used
in this study: stream-sediment samples collected as part of the National Uranium Resource Evaluation program
and rock samples from the National Geochemical Database. Stream-sediment samples are an amalgamation of
detritus sourced from the bedrock within a given drainage basin and transported down gradient through geomor-
phic processes (alluvial, fluvial, eolian, etc.). Stream-sediment samples provide a first-order vector for the source of
potential mineralization. The value of elemental concentrations should produce both positive and negative trends
throughout a drainage basin with distance from the potential source of an anomaly due to the mixing of the sed-
iments by surface processes. This sample type is minimally biased by the human sampler and represents a more
heterogeneous sample over a broad region. Rock samples represent elemental values for a specific point location at
the outcrop scale, and may give an actual representative value of mineralization in the region or even at the outcrop
scale. Rock samples are extremely susceptible to sampler bias and heterogeneity, and may be subject to both “high
grading” and “low grading.” Therefore, it is imperative to integrate the data of these two sample types in concert
when evaluating a potentially mineralized area.



National Uranium Resource Fvaluation Sediment Data

The National Uranium Resource Evaluation (NURE) program began in 1973 with a directive from the U.S. Atomic
Energy Commission to identify uranium resources throughout the United States. A significant part of the program
was directed at sampling, including stream sediment, soil, surface water, and groundwater. Sampling was conducted
in most states, including Wyoming. Although the original goal of the project was to identify uranium resources,
the samples were also analyzed for an additional 47 elements (Smith, 1997). These historic data are available from
the U.S. Geological Survey (Smith, 1997).

In this study, we used data from 18,424 stream-sediment samples collected from March 1976 through October 1979
throughout Wyoming as part of the NURE program. The sediment samples span the entire state, with only three
areas of sparse data coverage centered on the Bighorn Mountains in the north-central portion of the state, east of
Cheyenne in the southeast, and around Riverton in central Wyoming (fig. 1). Sediments were collected using a clean
polyethylene scoop and placed in a new polyethylene bag (Puchlik, 1977). After collection, the sediments were dried
in ovens at temperatures of 100°C or less and then sieved using either an 80 or 100 mesh sieve, yielding sediments
in the range of 149 to 177 micrometers (um) in diameter for geochemical analysis (Sharp Jr. and Aamodt, 1978).

The sediment samples were analyzed between 1976 and 1980 for elemental composition using different methods
at Los Alamos and Oak Ridge National laboratories. The analytical methods conducted at Los Alamos National
Laboratory were delayed-neutron counting analysis, dispersive X-ray fluorescence (XRF), arc-source emission
spectrography, and neutron activation. The analytical methods conducted at Oak Ridge National Laboratory were
fluorescence spectroscopy, neutron activation, emission spectrochemical, atomic absorption spectroscopy, mass
spectrometry, gamma spectrometer, atomic absorption spectroscopy for tin, and atomic absorption spectroscopy for
mercury. There are samples within the dataset without results for the full suite of elements due to the inconsistent
methods of analysis (fig. 2a).

National Geochemical Database Rock Data

The National Geochemical Database: Rock (NGDBR) data is a compilation of rock geochemistry data collected
by the USGS since the early 1960s (U.S. Geological Survey, 2018). The rocks in this dataset were collected and
analyzed as early as April 1964 and as recently as September 2001. The rock samples were collected from a variety
of sources such as outcrops (81.9 percent), drill cores (7.8 percent), prospect pits (3.2 percent), mines and quarries
(3.0 percent), and other unidentified sources (4.1 percent). This dataset contains 20,432 samples from Wyoming
and spans most of the state (fig. 1). NGDBR rock sampling techniques are generally described as the rock being
sampled from its source using a clean rock hammer and placed in a canvas or polyethylene bag until analysis (U.S.
Geological Survey, 2018).

Analyses of the 20,432 samples are split into seven different methods: XRF spectrometry, neutron activation, induc-
tively coupled plasma-atomic emission spectrometry, inductively coupled-mass spectrometry, emission spectroscopy,
and other and unknown analytical methods. Similar to the NURE sediment geochemistry data, the large variety
of analytical methods resulted in samples without analyses for the full suite of elements (fig 2b). Both the sediment
and rock sample datasets have spatial location data for each sample that can be used to document spatial changes
in elemental concentrations.

Hydrologic Units

Because the NURE dataset is composed of sediment samples, we chose to investigate spatial changes of element
concentration by associating sample locations with drainage basins. We used drainage basins as the spatial framework
because the sediment is transported through these drainage basins; we expect to observe changes in concentrations
throughout drainage basins as elemental concentrations change with distance from potential sources. Both rock
and sediment samples can be spatially associated with unique drainage basins, or hydrologic units, across the state.
The U.S. Department of Agriculture created a watershed boundary dataset of hydrologic units defined as the areal



"spoypow [eond[eue a1 Aq pazijoquids st uoneoof ajdures yoey “sajdures diyo-spo1 YgAON pue sojdwes 1uawipas YN Jo suoneso] Summoys depy *T 21mSrg

sJsjowolry| 0sz 002 05} 00} 05 0
SO|IIAl 051 001 05 0
N
0avio10D HVLlQN

Asepunog fjunop [
leyden K X

ejeq aseg suuafey)

£
<
]
<
«
)
&
v
%, ¢
é{ 4
«
<

«
ad S
iy
«
<
<
e
«
<
!
<
4

i
41
1
|

«
<
o
«
<«
&
A

E}) e

umouyun

JBYio

UOIJBAI}OE UOJINBN

Apwonoads ssew-pajdnod AjgAionpu|

“
<

<o
<

4 4 4 4 4«
<

|

Aypwonoads uoissiws
ojwoje-ewse|d pa|jdnod AjaAionpu|
Addoosoujoads uoissiwg v
poulaN [ednhjeuy
YEdoN

VASVILdIN

«
—qris

umousun
JUN0d uoJnau-pakeleg
JUNOO UOJNBU ‘[BOIWIBYO0.}08dS UOISSIWT

~<
o

J9jPWouads ewwes)
UOISSIWS ‘UOIJBAIJOB UOJINBN  ‘ee
JUNOD UOJINBU ‘UOIBAIOB UOJINSN

«. ‘e
4
‘1

S ROl L -,

92Inos-0Je
‘JUN0d UOJINBU ‘UoljeAljO. UoJINBN *
44X ‘JUNOD UOJINBU ‘UOIIBA[}OB UOJINSN

_i

r
“
I
|

|

R
]

90In0s-0JE

‘JYX ‘JUNOD UOIINBU ‘UOIJBANJOR UOIINBN
|esiwayooupoads

UOISSIWA ‘Y X ‘UOIIBAIJOB UOJINSON
uondiosqe

‘UOISSIWS ‘4YX ‘UOIJBAI}OB UOJINBN
AydeiBoyoads

UOISSIWA 80IN0S-0JB ‘4¥X ‘UOJINaN
uolssiwe

90IN0S-0Je ‘{YX ‘UOIBAI}OB UOJINSN

uoJinau pake|ap ‘4yX ‘UOIIBAIOE UOJINSN

poulein [eanhjeuy vV

mm:z « <<<
STOEGINAS dVIN > iy I v o

(1 Y e ¥ 1
T
&

)

<

¥

i
|
I
!
I
|
o
#i
1
<
d <«
PR N
<
<
<
«
<
<«
4
<
i

VIOXVA HLNOS
«
<
<
¢

> -
e
-«
o d
ot
a
A
<
4
<
G ¥

‘ .
<
<<
«
<
<«
<«
<
<<
~

ot

=

<
P
e
= o ,./-4'”,4

.
o
-

:

o

| |
M0 M.90L



A.
NURE
Elements i
> Sparkline

- I 10 IO O min

|| ||. |.|.||. | || ||| || |
v18 424 I

NGDBR

Elements

>

Samples

Samples

v20,432 I I

Figure 2. Data-dense matrices that document patterns in missing data. Columns correspond to the elements in the geochemical
datasets, and rows correspond to each sample in the dataset. The sparkline on the right summarizes the general shape of the data
completeness, and points out the maximum and minimum rows. When the sparkline shifts right it signifies more elements are
present for that particular sample. The NURE dataset (A) contains fewer samples and fewer elements than the NGDBR dataset

(B), but is more complete.
extent of surface water draining to a certain point. Furthermore, the Federal Standard for Delineation of Hydrologic
Unit Boundaries defines a hydrologic unit (HU) as:

“a drainage area delineated to nest in a multi-level, hierarchical drainage system. Its boundaries are defined by
hydrographic and topographic criteria that delineate an area of land upstream from a specific point on a river,
stream, or similar surface waters. A hydrologic unit can accept surface water directly from upstream drainage
areas, and indirectly from associated surface areas such as remnant, non-contributing, and diversions to form a
drainage area with single or multiple outlet points. Hydrologic units are only synonymous with classic watersheds
when their boundaries include all the source area contributing surface water to a single defined outlet point”
(U.S. Geological Survey and U.S. Department of Agriculture, 2013).

HUs are given unique identifiers called a hydrologic unit code (HUC) that consist of a combination of region, sub-
region, basin, subbasin, watershed, and subwatershed, depending on the hierarchical level of the hydrologic unit. In



Wyoming, there are 4 regional HUs, 14 subregional HUs, 17 basin HUs, 82 subbasin HUs, 422 watershed HUs,
and 2,382 subwatershed HUs. In this study, we focus on the highest spatial resolution—the subwatershed—to limit
future sampling programs to the smallest possible area. The 2,382 subwatersheds in Wyoming (fig. 3) have a mean
area of 28,239 acres (114.2 km?). Yellowstone Lake, within the Yellowstone Caldera in northwestern Wyoming,
is the largest subwatershed at 210,613 acres (852 km?). The smallest subwatershed is an unnamed depression near
Fontenelle Reservoir that is 3,056 acres (12 km?) and is located in the Green River Basin in west-central Wyoming,
Subwatersheds are the critical spatial framework for assessing the areal distribution of elements across the state.
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Figure 3. Map of the hydrologic unit subwatershed basins across Wyoming. The larger subregional-level hydrologic units are
labeled and delineated by the dark black line.

METHODS

Multiple Imputation by Chained Equations

To populate the subwatersheds with elemental data, we first addressed the geochemical sample incompleteness.
Because of the variety of analytical methods used to evaluate both the sediment and rock samples, the completeness
of geochemical data for each sample is variable. Elemental analyses for some samples returned results below the
instrument’s detection limits, and the results for that element were recorded as the minimum detection limit value.
Furthermore, all elements were not analyzed for all samples.

To address the issue of detection limits, we first reviewed results for individual samples with elements below the
detection limit. For samples below the detection limit of a certain element, we assigned a random number chosen
from a discrete uniform distribution, from zero to the minimum detection limit in parts per million (ppm) or
percent. We used a random number drawn from the discrete uniform distribution because the sample could have
contained slightly less than the detection limit, or the sample could have contained significantly less than the detec-
tion limit. This ensures the overall shape of the element’s distribution does not change and reduces bias from a large
number of samples using the detection limit as their analysis value.



To address the data issue of missing elemental values from the sediment and rock datasets, we used multiple impu-
tation using chained equations (MICE). MICE has been used in psychology and medicine (Azur and others, 2011;
White and others, 2011) and is a statistical technique used to fill in missing data. In general, MICE uses the dis-
tribution of observed data to fill in values for the missing data based on the assumption that the absent values are
missing at random. Azur and others (2011) provide a more detailed description of the steps used in MICE:

1. Fill all missing values with random values used as placeholders.
2. Set placeholder values to missing for the first element to fill in.
3. The observed values for the first element are regressed on the other variables in the dataset.

4. The missing values for the first element are filled in with predictions from the regression model. The filled-
in and observed values are then used in the regression for other elements.

5. Steps 2—4 are repeated for each element in the dataset for a specific number of cycles.

We used MICE for both the sediment and rock datasets to independently determine the missing values after 100
cycles. Upon completion, both the NURE sediment and NGDBR rock datasets contained a complete geochemi-
cal suite. We validated this method using a subset of both datasets that have all analytical values for each element.
We then systematically removed certain known values to determine if MICE could reproduce the original dataset.
Using a Kolmogorov-Smirnov (K-S) test, the filled-in values are statistically the same as the actual values (p > 0.1)
for each element (table 1) and provided select elements for visual inspection (fig. 4). In figure 4, we cross plotted the
filled in values with the actual values, and report the mean absolute error and absolute error of the filled-in values.
With a full geochemical suite for sediment and rock samples, we next evaluated the spatial distribution of elements
across subwatersheds.

Table 1. Results of imputation for each element in the NURE dataset.

Crustal Abundance Dataset Element Mean Imputed Element Mean MAE K-S Test

Element (pPM) (PPM) (PPM) (PPM) Statistic K> Prvalue

Ag 0.07 1.60 1.50 1.46 0.03 1

Al 82,300 5.40 5.40 0.99 0.07 0.72
As 1.80 4.30 4.70 2.39 0.31 0.35
Au 0.002 0.003 0.001 0 0.01 0.99
B 10 21 21 10.15 0.19 0.26
Ba 425 677 707 200 0.08 0.54
Be 2.80 1.70 1.60 0.44 0.02 1

Bi 0.17 2.50 2.50 2.40 0.06 1

Ca 41,500 25,000 24,000 16,100 0.08 0.45
Cd 0.20 2 1.80 1.70 0.04 1

Ce 60 64 65 22.89 0.06 0.88
Co 25 8 8.60 291 0.07 0.63
Cr 100 70 67 29.89 0.06 0.88
Cs 3 2.90 2.70 1.59 0.07 0.81
Cu 55 19 19 9.03 0.06 0.79
Dy 3 4 4 1.12 0.03 1



Table 1 continued.

Element Crustal Abundance Dataset Element Mean Imputed Element Mean MAE K-S _1'e§t K-S p-value
(ppm) (ppm) (ppm) (ppm) Statistic
Eu 1.20 1.20 1.20 0.30 0.07 0.81
Fe 56,300 20,000 21,000 6,500 0.07 0.63
Hf 3 9.60 10 6.14 0.08 0.45
K 20,900 14,000 14,000 3,300 0.10 0.31
La 30 38 38 12.43 0.07 0.62
Li 20 28 28 10.54 0.06 0.88
Lu 0.50 0.30 0.30 0.15 0.07 0.89
Mg 23,300 16,000 16,000 6,400 0.04 0.99
Mn 950 427 448 176.86 0.05 0.97
Mo 1.50 1.70 1.50 1.56 0.07 1
Na 23,600 9,000 9,000 3,600 0.10 0.25
Nb 20 10 10 7.54 0.10 0.25
Ni 75 16 17 11.04 0.05 0.97
P 1,050 698 691 265 0.15 0.53
Pb 12.50 12 12 7.72 0.07 0.62
Rb 90 39 43 21.07 0.15 0.10
Sb 0.20 0.50 0.50 0.66 0.06 0.95
Sc 22 7.40 7.40 2.19 0.07 0.72
Se 0.05 1.60 1.80 1.13 0.12 1
Sm 6 5.60 5.10 2.16 0.07 0.81
Sn 2 4.10 8.40 7.41 0.20 0.11
Sr 375 261 271 127.69 0.08 0.54
Ta 2 0.19 0.08 0.18 0.05 0.98
Tb 0.90 0.13 0.14 0.18 0 1
Th 9.60 12.00 13 6.62 0.05 0.97
Ti 5,700 3,140 3,077 1,027 0.06 0.88
U 2.70 3.40 3.30 3.64 0.09 0.47
v 135 78 74 26.08 0.10 0.25
w 1.50 7.60 7.40 5.11 0.06 0.95
Y 33 14 14 4.42 0.05 1
Yb 3 3.10 2.80 1.22 0.07 0.89
Zn 70 60 57 33.79 0.05 0.93
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Spatial Associations

For this next step, we integrated the sample locations with the subwatershed dataset. The rock and sediment data
were binned by each subwatershed. The maximum values for each element were then assigned to the subwatershed
basin for both sediment and rock samples. We chose to bin the point data to polygons since we were covering the
entirety of the state. This is different from methods used by Yager and others (2013), who analyzed the NURE
sediment samples as point data. Although we used a similar spatial-hotspot analysis, we used a contiguity-weight
spatial matrix, and binning the samples by subwatershed mitigates oversampling bias in prospective regions. A con-
tiguity-weight spatial matrix is a specific type of spatial weights matrix used to represent the spatial structure of a
dataset. Specifically, it is defined as a connection between two adjacent polygons.

For the NURE sediment dataset, we used a drainage network contiguity weight scheme: subwatersheds up and
downstream of one another are considered neighbors, while subwatersheds on opposite sides of drainage divides are
not. We used this neighborhood scheme under the assumption that sediment is only transported downstream and
that adjacent subwatersheds across a

drainage divide are not connected in | Drainage Network Contiguity Spatial Matrix
the sense of sediment transport (fig.
5a). Once we constructed spatial
weights matrices for both the sed-
iment and rock datasets, we could
furcher investigate differences or “n
similarities between connected sub-
watersheds and look for patterns in a5 |
the spatial data.
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Getis-Ord G Hotspot Analysis

To analyze the spatial distribution of each element in the subwatershed across the state, we employ a spatial statistic
used to document spatial clustering or anti-clustering of values in two-dimensions. This statistic is called the Getis-
Ord G/*, and it documents areas of elevated or lowered values relative to a global mean. The Getis-Ord G * statistic
was developed by Getis and Ord (Getis and Ord, 1992; Ord and Getis, 1995) as a metric to document spatlal clus-
tering of a feature. Formally, it is defined as:

* ’jj Xz—]

G- :
n 2 n
[n o _(ijl Wi.j) :l
n-1
where x is the attribute value for feature /, w, . is the spatial weight between feature iand j, 7 is the total number of
features,
n
X = Z j=1 X
n
and

In this case, Getis-Ord G * compares the value of an element in a subwatershed to the value of the same element in
neighboring subwatersheds. If the subwatershed has a high value for that element and the nelghborlng features also
have similarly high elemental values, the calculated G* value will be high. When the local sum is greater than the
expected local sum, it is statistically significant. We calculated the G * statistic, considered a hotspot analysis, for
both the sediment- and rock-sample datasets independent of one another.

G* Values

The result from the hotspot analysis (G *) is a value that spans all real numbers. G * values can be thought of as a
distance from the mean of the distribution. A G * value of +2.0 is the same as a value located two standard deviations
from the mean (20). Another way to think of a G * value is as the cumulative percent of the distribution. Values less
than 2.0 and greater than +2.0 document the 2.3 percentlle and 97.7 percentile, respectively. Accordingly, G * values
less than -2.0 and greater than +2.0 are statistically significant (p < 0.05). Negative G * values document statistical
cold spots, or areas of low elemental abundance, while positive G* values document statistical hotspots, or areas
of high elemental abundance. While it is useful to know where there are hot and cold spots for each element, to be
most effective we need to use the sediment and rock data in concert together when available. Because G,* values
document the relative abundance of each element for both datasets, we can classify subwatersheds by the sediment
and rock G,* values.

Classification

Each subwatershed with both a rock and sediment sample are classified by G,* values into four distinct classes (fig.
6). The first class consists of rock samples with G * values above +2.0 and sediment samples ranging from -2.0 to
+2.0. We call this class “known areas” because of the a posteriori knowledge that rock samples were deliberately
collected from areas that are statistically hot. We are less concerned with sediment in these cases because we have
ground-truth evidence of a hotspot from the rock samples.
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The second class consists of sediment samples with G * values above +2.0 and rock samples less than +2.0. We call
this class “missed areas” because while the rock samples do not indicate a hotspot, the sediment samples do. This
means that barring any major drainage reorganization since the Holocene, there is opportunity to find the outcrops
that are the source to the above-average sediments.

The third class consists of sediment and rock samples with G * values less than +2.0 but greater than -2.0. We call
this class “background” with the interpretation that all neutral or average samples for both rock and sediment fall
into this category.

The fourth class consists of sediment and rock samples with G * values less than -2.0. We call this class “below

background” because the samples in this class indicate cold spots for both sediment and rock samples. This means
that the element of interest is depleted in these areas.
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Figure 6. Visual representation of the classification scheme used to symbolize known, missed, potential, average, and below
background areas. In the center of the figure is a Venn diagram documenting subwatersheds with sediment and rock samples. As
evident from the Venn diagram, there are no subwatersheds with only rock samples and no sediment samples. If a subwatershed
contains a sediment sample and rock sample, it is plotted in the two-dimensional space at the top of the figure. The G* values for
both the sediment and rock sample in the subwatershed is then used to classify the subwatershed. If a subwatershed contains only
a sediment sample, it is plotted in the one-dimensional space at the bottom of the figure, and the subwatershed is classified by its
sediment sample G* values.
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In cases where there are only sediment samples and no rock samples within a subwatershed, we used a three-class
classification scheme. Subwatersheds with sediment sample G * values of less than -2.0 are classified as “below back-
ground” in that the G,* values document a cold spot in the sediment samples (fig. 6). Subwatersheds with sediment
samples between -2.0 ‘and +2.0 are classified as “background” as they are similar to the “background” class listed
above. These subwatersheds are neutral and do not document a hot or cold spot. Finally, subwatersheds with sed-
iment sample G * values of +2.0 and greater are classified as “potential areas” because they document statistically
hot areas where there are no rock samples to constrain the source of the sediment. There are no subwatersheds that
contain only rock samples and no sediment samples. The most important classes for the purpose of this report are
the “known,” “missed,” and “potential” areas as they highlight areas of interest for future exploration.

Classification Validation Workflow

To test the validity of the classification model and data completion methods, we focus on titanium and rare earth
elements (REEs). We chose titanium and REEs because of the published rock geochemical data for REEs and tita-
nium in Wyoming by Sutherland and others (2013) and Sutherland and Cola (2015, 2016).

The workflow for titanium is as follows:

1. Fill in all missing element values for the sediment samples using MICE.

2. Bin the sediment-sample values to hydraulic unit subwatersheds and select the highest sample value for
titanium to represent each hydraulic unit.

3. Build a dendritic spatial contiguity matrix for the subwatersheds to analyze the sediment samples.
4. Calculate G * for each subwatershed using the binned titanium values.
5. Fill in all missing element values for the rock samples using MICE.

6. Bin the rock-sample values to hydraulic unit subwatersheds and select the highest sample value for titanium
to represent each hydraulic unit.

7. Build a queen spatial contiguity matrix for the subwatersheds to analyze the rock samples.

8. Calculate G * for each subwatershed using the binned titanium values.

9. Classify each subwatershed according to the sediment- and rock-sample G * values.

10. Classify each subwatershed without rock samples according to the sediment-sample G * values.

We then visually inspect the results of the classification and compare descriptive statistics for each class across the
entire state.

The workflow for the REEs is similar to the workflow for titanium, with the exception that after we calculate the
G * values for each individual element at the subwatershed level (step 8), we sum the G,* values for all REEs within
each subwatershed. Because we sum the G* values, any subwatershed with REEs that has a value above or below
our + 2.0 threshold will be classified in the same way as individual elements.
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RESULTS

Titanium

Areas with sediment sample G * values greater than +2.0 are randomly distributed across the state with some clus-
ters in the Greater Green River Basin, the central Laramie Mountains, and a few areas near the Black Hills Uplift
(fig. 7a). Areas in Wyoming that have rock sample G * values greater than +2.0 for titanium include the Black Hills
Uplift in the northeast, the Absaroka Range in the northwest, the west-central Gros Ventre Range, the northwest
part of the west-central Wind River Range, and the Medicine Bow Mountains and northern Laramie Mountains
in the southeast (fig. 7b). In total, the potential areas cover 19,200 km? (7.5 percent of the state), the missed areas
cover 12,186 km? (4.8 percent of the state), and the known areas cover 14,839 km? (5.8 percent of the state). All
combined, the known, missed, and potential areas constitute 46,266 km? or 18.1 percent of the state (fig. 7c).

Rare Earth Elements

Regions with sediment sample G * values greater than +2.0 are much more randomly distributed than the rock-sam-
ple hotspots, but we do note continuous hot areas both north and south of the Wind River Range, in the Absaroka
Range, and in the central Laramie Mountains (fig. 8a). Areas in Wyoming that have rock sample G * values greater
than +2.0 for all REEs include the Black Hills Uplift in the northeast (specifically the area surrounding the Bear
Lodge Mountains), the Absaroka Range in the northwest, the centrally located Granite Mountains, the west-cen-
tral Gros Ventre and Wind River ranges, and the Medicine Bow and Sierra Madre mountains in the southeast (fig.
8b). The highest number of missed areas, not surprisingly, tend to surround the known areas (fig. 8¢). In total, the
potential areas cover 19,990 km? (7.8 percent of the state), the missed areas cover 12,365 km? (4.8 percent of the
state), and the known areas cover 31,385 km? (12.3 percent of the state). All combined, the known, missed, and
potential areas constitute 63,740 km? or 24.9 percent of the state. This G* values classification scheme correctly
identifies the Bear Lodge REE project in the northeast corner of the state as a known deposit, with some missed
areas to the northwest of the deposit (fig. 8¢).

Validation

To further validate the G * values classification method, we used the ground-truth rock-chip samples from Sutherland
and others (2013) and Sutherland and Cola (2015, 2016) to provide a baseline for prediction accuracy. We used all
418 samples to validate our classification scheme for subwatersheds. Our validation compares the predicted class of
each subwatershed to a binary classification of the samples collected and analyzed by Sutherland and others (2013).
Known, missed, and potential areas are classified as positive predictions, and their count is summed. Background
and below background areas are classified as negative predictions, and their count is summed. Using this binary
classification scheme, we then calculate the numbers of true positives (correctly predicted known, missed, and poten-
tial areas), true negatives (correctly predicted background and below background areas), false positives (incorrectly
predicted known, missed, and potential areas), and false negatives (incorrectly predicted background and below
areas). From the counts for the predicted and actual classes we then calculate accuracy, sensitivity, and specificity of
the model for 1-5 times crustal abundance of elements (Taylor and McLennan, 1995; table 2).

Accuracy is defined as the sum of true positives and true negatives divided by the sum of the total population, or
simply the number of correct predictions divided by the total number of predictions. Sensitivity is the sum of true
positives divided by the sum of actual positives, while specificity is the sum of true negatives divided by the sum of
actual negatives. A model with high sensitivity and low specificity has few false negatives and many false positives,
meaning the model would predict missed or potential areas where they are actually background or below background
areas. A model with low sensitivity and high specificity has many false negatives and few false positives, and would
predict background or below background areas when they are actually missed or potential areas. We prefer a model
with high sensitivity and low specificity as it is more important to overestimate the mineralization potential of an
area and verify the modeled predictions with a sampling program than to underestimate the potential for mineral-
ization and never disprove the model with a sampling program.
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Figure 7. Map showing results from
hotspot analysis and classification for
titanium. The maps document the

following: (A) G* values for sediment

samples (NURE dataset), (B) G,-* values
for rock-chip samples NGDBR data-
set), and (C) classification results for
both rock-chip and sediment samples.
Dashed rectangle to the southeast is fig.
9a, and dashed rectangle to the south-
west is fig. 10a.
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Figure 8. Map showing results from
hotspot analysis and classification
for all rare earth elements. The maps

document the following: (A) G

values for sediment samples (NURE
dataset), (B) G* values for rock-chip
samples (NGDBR dataset), and (C)
classification results for both rock-chip
and sediment samples. Dashed rectangle
to the northeast is fig. 9b, and dashed
rectangle to the southwest is fig. 10b.
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Table 2. Accuracy, sensitivity, and specificity of the classification tested on the data from Sutherland and others (2013)
and Sutherland and Cola (2015, 2016).

Accuracy Sensitivity Specificity

Concentration of
Elements Relative to Titanium REEs Titanium REEs Titanium REEs
Crustal Abundance

Ix 74.4% 53.1% 0.18 0.36 0.80 0.68
2x 77.3% 57.4% 0.17 0.31 0.80 0.65
3x 76.6% 60.3% 0.11 0.31 0.80 0.65
4x 79.2% 60.3% 0.17 0.26 0.80 0.65
5x 70.1% 60.0% 0.21 0.33 0.80 0.66

From the rock and sediment samples for titanium we note that the accuracy of the classification increases from
74 percent to 79 percent as the concentration of elements relative to crustal abundance increases, up to four times
crustal abundance, before dropping to 70 percent accuracy at five times crustal abundance (table 2). The sensitivity
of the classification scheme remains constant with little variation relative to crustal abundance (+0.1) as element
concentration increases. The specificity of the classifier remains constant with no variance across different crustal
abundances, implying the model classifies background areas as known, missed, or potential more often than it
classifies known, missed, or potential areas as background. We interpret the model behavior of classifying a subwa-
tershed with average concentrations of titanium as being a known or missed area as more desirable than classifying
an area with elevated levels of titanium as average.

From the rock and sediment samples for REEs we note a similar trend as with titanium. The accuracy of the classi-
fier increases with the concentration of elements relative to crustal abundance up to three times crustal abundance,
then remains constant to five times crustal abundance (table 2). The sensitivity of the classifier remains constant
with some variation (+0.1) as element concentration increases. The specificity of the classifier remains constant with
little variance across different crustal abundances (+0.03). The low-sensitivity values and high-specificity values for
all levels of crustal abundance mean the model is more likely to have more false negatives and fewer false positives.
As with titanium, we suggest the model behavior of classifying a subwatershed with average concentrations of REEs
as being a known or missed area is preferable to classifying an area with elevated levels of REEs as average.

Case Studies

In this section, we cover two areas of interest for titanium and rare earth elements. We used the classification scheme
to identify areas of interest for titanium and REEs, and relate results from previous geological studies to the model
predictions.

Titanium

We used the northern Laramie Mountains as a case study area for titanium because the area contains previously
documented titaniferous iron deposits (Sutherland and Cola, 2015). In the northern Laramie Mountains, the model
predicts known and missed areas covering and surrounding the titaniferous deposits. Additionally, the subwater-
sheds with only sediment samples predict potential areas of titanium that remain unsampled for rock samples (fig.
9a). The known areas surrounded by missed areas and potential areas is what we would expect to see in areas where
titanium erodes from a mineralized area and is transported downstream. The potential areas in the northern Laramie
Mountains are of particular interest to constrain additional rock sources of titanium in the drainages.
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Rare Earth Elements

The Bear Lodge REE project in the Bear Lodge Mountains along the western limb of the Black Hills Uplift is an
area with known REE development potential (Sutherland and others, 2013; Sutherland and Cola, 2016). We used
it as a case study to examine the validity of our classification scheme. The subwatersheds that contain sampled por-
tions of the deposit are classified as known areas based on sediment and rock sample G * values, implying the model
can correctly identify areas with known deposits. To the west of the known mineralized area, the sediment samples
are classified as potential areas for REEs. This is most likely because the REEs weathering out of the Bear Lodge
district are transported to the west by rivers. However, because the center of the deposit was not sampled and not
included in our dataset, it is labeled as background. In this case, the sediment samples provide a vector of areas to
focus on, and they direct us to the primary deposit in the Bear Lodge Mountains (fig. 9b).

FUTURE SAMPLING

At the statewide scale, one area of potential exploration interest for both REEs and titanium indicated from the
sediment data is the southwest corner of the Greater Green River Basin (fig. 10). There are several subwatersheds
classified as potential areas, and no associated rock-sample data exist for the area to validate the sediment-sample
data. Additional rock sampling of the subwatersheds in this area would be useful to verify the anomalous sediment
samples and to potentially pinpoint the source of the anomalies (fig. 10). Hausel (1998) and Sutherland and Cola
(2016) discuss the potential of breccia pipes in this part of the state as hosts of REEs, lending further credence to the
model predictions of missed and potential areas. More detailed geologic field work is needed to validate the model
predictions in these areas for both REEs and titanium. However, the model works well as a regional exploration
tool and is easily applied to all elements in the dataset.

SUMMARY AND CONCLUSIONS

In this report we present a novel use of multiple imputation using chained equations (MICE) to fill in missing values
in a geochemical dataset. We validated the method by creating a test dataset for each element and calculating the
mean absolute error. A K-S test validated the similarity of the dataset before and after filling in missing values. Once
we filled in the missing values, we spatially binned the highest values for each element to hydraulic units. After
spatial binning, we calculated the Getis-Ord G *statistic for both sediment and rock sample datasets. This statistic
documented hot and cold spots for each element across the state. The resulting G,* values for sediment and rock
datasets were then used to classify subwatersheds as known, missed, potential, background or below background.
The classification model, validated against 418 samples for both rare earth elements and titanium, documents that
this G * values classification scheme tends to overestimate the number of missed and potential areas. We suggest that
searchlng awider area of possibilities is preferable to limiting the search area and possibly missing a mineralized area.

The primary use of this model is to highlight areas in Wyoming for focused sampling programs for specific minerals.
It also is useful for regional-scale exploration of critical and strategic minerals and resources. In addition, this model
will aid in selecting areas for further geologic investigation through mapping. Although we present two case studies
for rare earth elements and titanium that confirm the modeled predictions, future work on critical and strategic
elements and minerals across the state is needed to validate the model for different elements. The benefit of using
hotspot analysis with classification is that this method is applicable at different scales. This workflow and model are
easily applied at both the local, regional, and national scale. Classification and hotspot results for all elements are
accessible through the WSGS Mines and Minerals Map (http://wsgs.maps.arcgis.com/apps/webappviewer/index.
html?id=af948a51f4954a81adeae8935440cd28) and through the WSGS publication search page (https://www.wsgs.

wyo.gov/pubs-maps/publication-search).
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